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DEFINITIONS
IDA publishes the following documents to report the results of its work.

Reports
Reports are the most authoritative and most carefully considered products IDA publishes.
They normally embody results of major projects which (a) have a direct bearing on
decisions affecting major programs, (b) address issues of significant concern to the
Executive Branch, the Congress and/or the public, or (c) address issues that have
significant economic implications. IDA Reports are reviewed by outside panels of experts
to ensure their high quality and relevance to the problems studied, and they are released
by the President of IDA.

Group Reports
Group Reports record the findings and results of IDA established working groups and
panels composed of senior individuals addressing major issues which otherwise would be
the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals
responsible for the project and others as selected by IDA to ensure their high quality and
relevance to the problems studied, and are released by the President of IDA.

Papers
Papers, also authoritative and carefully considered products of IDA, address studies that
are narrower in scope than those covered in Reports. IDA Papers are reviewed to ensure
that they meet the high standards expected of refereed papers in professional journals or
formal Agency reports.

Documents
IDA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done in quick reaction studies, (b) to record the proceedings of
conferences and meetings, (c) to make available preliminary and tentative results of
analyses, (d) to record data developed in the course of an investigation, or (e) to forward
information that is essentially unanalyzed and unevaluated. The review of IDA Documents
is suited to their content and intended use.

The work reported in this document was conducted under contract MDA 903 84 C 0031 for
the Department of Defense. The publication of this IDA document does not indicate
endorsement by the Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency.



REPOT DCUMNTATON AGEForm ApprovedREPOT DOUMENATIO PAG J MB No. 0704-0186
ANieift bpa olg lwdw, ' ~oes.dmadm .sb sq I .t prt ams. odidog fte No. km ,svgwwmqmvuw^ .i *@weft" us ts urces. us~" w manto" o amraee.gn

Owphng -_1 twooadeg ~ n Ore ede d..@1 aailan. Somilewinvha m gM -- & fla ode .ssoaf or any OiM wpa of Ow. clmim. of wboa%-A Mansoggdm. ta uui..m Ow burds. DWsww
HsadiinI.VSraf lat. ~ komao hibinda. OWedi Assa sm 125 .1b.. Davis a low". SBi. 12M, hhiqinna. VA 22U2s3 OWd to to 0115as of Momp~met MWd budget. PaperaI. Rawck. Pmpsa

1. AGENCY USE ONLY (Leov. hbnpk) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

IDecember 1988 Final--October 1987 to December 1988
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

IDA Gamma-Ray Laser Annual Summary Report (1988): Investigation of C - MDA 903 84 C 0031
the Feasibility of Developing a Laser Using Nuclear Transitions

______________________________________ T - T-R2-316
6. AUTHOR(S)

Bohdan Balko, David A. Sparrow, Irvin W. Kay, Colleen Holcomb,
Karen K. Garcia

7. PERFORMNG ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION
REPORT NUMBER

Institute for Defense Analyses
1801 N. Beauregard St. IDA Paper P-21 75
Alexandria, VA 22311-1772

1. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINIG/MONITORING
AGENCY REPORT NUMBER

Strategic Defense Initiative Organization
The Pentagon
Washington, DC 20301-7100

11. SUPPLEMENTARY NOTES

12a. DISTRIBUT1ONJAVAILABILITY STATEMENT 121). DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (IbtxhuXM,200 sWar&)

This report summarizes the IDA research effort in FY 1988 in investigating the feasibility of developing a
-ky-ray laser.

14. SUBJECT TERMS I& NUMBER OF PAGES
Nuclea Lase, Ganvna'-,aY Lase, Graser, SuPer1rajance, Supevluoreecen, Mossbsuer Effect Sorman 121
Effect, Nuclear homers, energy deposihon. an~mierre rise during purnping , upoonvemsion, closely spaced 16. PIECD
101#e01, euipedmnenial Ischniqu for upconversion, search for closely spaced levelsRCECD

7?. SECU1RrY CLASSIFCATION 15. SECURITY CLAssIFICATMO 19. SECURITY CLASSIFICATION 2. LIMITATION OF ABSTRACT
OF Rev"R OF ThIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NS 754" 2004MW standard Form 296 Tev. 2-69)
poe~ssab by AMe $at Z
uo-in



IDA PAPER P-2175

IDA GAMMA-RAY LASER
ANNUAL SUMMARY REPORT (1988)

Investigation of the Feasibility of
Developing a Laser Using Nuclear Transitions

Bohdan Balko
David A. Sparrow

Irvin W. Kay
Colleen Holcomb
Karen K. Garcia

December 1988

Apum" W PWr puli rkau; OWM~htiun mflltad.

IDA
INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-R2-316



PREFACE

In January 1985 the Director of the Science and Technology Directorate of the

Strategic Defense Initiative Organization (SDIO) asked members of the IDA research staff

to investigate the feasibility of developing a '-ray laser. The staff determined what work

had been done, who was currently working in the field, and what work should be

encouraged or supported. A workshop was convened for researchers directly involved

both in gamma-ray laser work and in ancillary fields such as nuclear structure, radiation

propagation in crystals, Mlssbauer Effect, and optical lasers. Next, an in-house study was

undertaken to clarify critical issues concerning the various pumping schemes proposed at

the workshop as well as systems questions about the y-ray laser as a working device.

The proceedings of the workshop were published in the form of a report to the

Innovative Science and Technology Office (IST) of the SDIO. The work completed in

1985 was presented in an IDA Paper (Ref. 1).

In 1986, the in-house work focused on extending the data base, the nature of

superradiance in the y-ray laser context, and a detailed investigation of the upconversion

pumping scheme. A discussion of nuclear systematics, investigations of electron-nuclear-

driven pumping, and lifetime measurements rounded out that study. The results of the

FY 1986 effort were also presented in an earlier IDA paper (Ref. 2).

In 1987, the IDA research staff looked at the state of the art and assessed the

situation in y-ray laser work with focus on two areas of research interest critical to concepts

for developing a y-ray laser. Heating effects associated with upconversion techniques were

discussed. The sources of inhomogeneous broadening which destroy the Mbssbauer

Effect were investigated and techniques available for restoring the resonance by external or

internal fields were considered.

This report covers the work done in EY 1988. In 1988 the in-house work

concentrated on (1) establishing a theoretical model of nuclear superfluorescence which

took into account specific characteristics of nuclear radiation emission and transport that are

important for superfluorescence on the nuclear scale, (2) examining in more detail and for

more realistic parameters the heating effects inherent in upconversion concepts, and

ifi



(3) examining the speed of response of nuclei to applied external fields, as exhibited by

their spectra.

The development of a 7-ray laser is viewed as a high-risk/high-payoff undertaking.

IDA's involvement focuses on minimizing the risk and on striving to redirect the effort

when proposed schemes are shown not to be feasible.
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EXECUTIVE SUMMARY

This report describes the 1988 research effort by members of the IDA staff in the
field of y-ray lasers. The work is part of a continuing task in support of the Innovative

Science and Technology Office (IST) of the Strategic Defense Initiative Organization
(SDIO). The development of a y-ray laser is a high-risk science and technology

undertaking. IDA involvement has focused in large measure on minimizing the risk and
attempting to redirect the program as quickly as possible when proposed schemes prove
infeasible. The report is presented in six independent chapters.

Chapter I discusses the nuclear superfluorescence (SF) problem. Seven areas of
concern critical to the observation of nuclear SF but not relevant or as important to SF at
longer wavelengths are discussed. A model of nuclear SF based on the Maxwell Bloch

formalism as adapted to SF by Haake and Riebold is developed. A closed form solution to
the linear part of the problem is obtained and a direct solution for the nonlinear part for the
average intensity is discussed. The importance of this result is that it avoids the use of
Monte Carlo techniques and explicitly exhibits the dependence of the pulse intensity on the
strength of competing processes, (e.g., internal conversion), the beam attenuation due to
scattering or absorption processes, (e.g., the photoelectric effect), and the finite pumping
time of the lasing level. The effects of beam attenuation and competing transitions on SF
emission are investigated and the different roles attenuation plays in SF and stimulated
emission are discussed.

Chapter II discusses SF at wavelengths shorter than the internuclear distances. A
condition for SF under these conditions for a crystalline solid is obtained from the

Bonifacio-Lugiato theory.

Chapter III discusses our recent investigation of heating triggered by the
photoelectric effect during upconversion in a y-ray laser. This is a continuaIon j) last
year's effort, as presented in the 1987 report. We find that pumping transitions with

energy between 10 eV (the ionization threshold) and 10 keV are infeasible because of this
heating. This is true even if light low photoelectric cross section materials are used as a
heat shield. We remain skeptical about possibilities for pumping transitions with energy
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greater than 10 keV. Below 10 eV no nuclear states are known. A proposal to search for
such states is presented in a subsequent contribution.

Chapter IV discusses simple and inexpensive ways of searching for nuclear states
located close to isomeric levels. We have shown (1987 report and Chapter III of this
report) that photoelectric heating eliminates the possibility of pumping transitions in the
10 eV to 10 keV region. No nuclear states are known to lie within 10 eV of isomers. We
propose to search for such states using blackbody radiation. Our calculations indicates that
such a state, if connected to an isomer by a reasonably strong M1 matrix element, could be
identified if it were about 0.1 eV to 10 eV above the isomer. Below 0.1 eV even a strong
single-particle Ml transition would probably have too small a cross section to allow easy
detection. In the near future, with the advent of tunable coherent sources, the energy
regime within 0.1 eV of an isomer could also be searched for states.

Chapter V describes a numerical technique for solving the heat diffusion problem
for a multimedia system when distributed sources are present. The technique is used to 0
study the dynamics of heat removal from an active regime by a heat sink when the system
is subjected to an upconversion laser pulse.

Chapter VI calculates the response of the nuclear system to externally varying fields
as exhibited in the nuclear spectrum. This calculation addresses the length of time a system •
has to be subjected to line-narrowing pulses in order to narrow inhomogeneously
broadened lines to acceptable widths for lasing.

0

0

40

... ... .....



I. NUCLEAR SUPERFLUORESCENCE

A. INTRODUCTION

Superfluorescence (and superradiance)1 is the cooperative spontaneous emission by
identical atoms (or other radiators) of coherent radiation characterized by directed intense
pulses of duration much shorter than the spontaneous emission lifetime of individual

radiators (Ref. 3).

Generally speaking, the emission of a superfluorescent (SF) pulse requires the
preparation of an inverted population of the identical radiators. Experimentally, the emitted
pulses are characterized by a SF time V and a delay time q), following the inversion of the
population. From simple theory, Ref. 4, a relationship can be obtained between TR and %b,
the density of cooperating radiators p, the natural radiative lifetime To, the wavelength of
the emitted light, X, the number N of radiators, and the cavity length 1. In terms of those

parameters2,

i n(N) =. ± 4 itrIn (N)

and the theory predicts a pulse intensity Is(t) given by the "inverted pendulum expression"

SWe follow dhe convention of Bonifacio and Lugiato (Ref. 4) who distinguish between radiation emitted
by coherently prepared systems and with initially a macroscopic dipole moment, which they call
superadiant, and incoherently prepared systems which do not have a macroscopic dipole moment
initially but interact through normal fluorescent decay to evolve a macroscopic dipole which then
radiates coherently in a cooperative mode, which they call superflorescent. In both cases, the
intensity is pqwrtioaal to N2.

2 Tie value of the characteristic SF time tR used here is that used by Bonifacio and Lugiato (Ref. 4) and
results from assuming an isotrpic distribution of the dipole moment. It differs by a factor 1/3 from
the value derived by Polder et a]. (Ref. 44) who Rake into account the anisotropy of the two level
transition. We will use this value ISR = 1/3 tR in futher discussios.
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(Ref. 4), where t is measured from the time of the (instantaneous) inversion.

Clearly, to describe more realistic experimental conditions, more general theories

have to be involved.

It is expected that if a "gamma-ray laser" is developed it most probably will emit in
a superradiant (SR) or superfluorescent (SF) mode instead of a stimulated emission (SE)

mode (Ref. 5)3. There are some characteristic features of superfluorescent decay which
may provide ways of overcoming specific nuclear problems (Ref. 6) which at present

prevent CW or pulsed laser (SE) action. The purpose of this paper is to investigate the

possibility of nuclear superfluorescence and describe the interrelationship of the pertinent
nuclear and solid-state parameters that govern the experimental realization of this
phenomena. We also contrast the nuclear problem with the atomic and molecular SF

problem.

Superradiance has been observed in atomic and molecular systems and the
phenomena have been explained theoretically (Ref. 7). An excellent discussion of the
experimental results is presented by Q.H.F. Vrehen and H.M. Gibbs (Ref. 7) and of the
present state of theoretical understanding by M. Gross and S. Haroche (Ref. 8) and
M.F.H. Schuurmans, Q.H.F. Vrehen and D. Polder (Ref. 9). Just as the observation of
resonance in nuclear systems requires special conditions that are more stringent than in 0
atomic systems, the realization of superradiance on the nuclear level must overcome

restrictions that are often not important in atomic and molecular systems. Some special
consideration has to be given to the short wavelength of the nuclear radiation, the

crystalline structure and its effect on SR and SF, attenuation of the beam due to inelastic
scattering, destruction of resonance due to recoil of the nucleus, inhomogeneous

broadening, and relaxation effects. A strong M~ssbauer Effect (recoilless emission) and a
strong Borrmann Effect (enhanced photon transmission in certain directions in a crystal) are

generally considered indispensible for nuclear superfluorescence but not for atomic or
molecular superfluorescence.

3 The following example illustates the reason. An active cylindrical volume, with a radius = 10-5 cm,
and length = 10-2 cm, composed of Fe57 (density - 8 x 1022 cm-3) will contain 2.5 x 1011 nuclei. If
the nuclei are all excited to an energ level of 104 ev (IA) with a natural linewidth of 10-9ev,
corresponding to a lifetime of 6.6 x 10- sec, the superfluorscence time ?sF will be 6.9 x 10-11 sec.
Since each photon has the energy 104ev, the total energy emitted will be 2.5 x 1014ev if the recoilless
fraction is 1/10. This is 4 x 10-5 J; thfore, the power in the emitted superf•uorescence pulse will be
5.8 x 105 W. However, if the emitted pulse width were that of the natural lifetime the power would
only be 61W.
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The extensive literature on superradiance and superfluorescence offers a detailed

physical understanding of the phenomenon (see, for example, review paper, Ref. 8).

However, it is not yet clear whether any of the proposed mathematical models of SR and

SF can give reliable quantitative predictions of effects in nuclear rather than atomic

emission levels.

The model presented by R. Bonifacio and L.A. Lugiato (B-L) in Ref. 4 appears to

rely on the fewest ad hoc assumptions. It includes (non relativistic) quantum effects, line-

broadening, and (non-Markovian) stimulation of the atomic system by the spontaneously

emitted photons. The only significant ad hoc assumption in the model appears to be its

restriction of the electromagnetic field to a pair of independent resonant modes. The

authors partially justify this assumption by limiting the geometrical configuration to a

needle-shaped cavity which, if thin enough, will support just two identical waves

propagating in opposite directions parallel to the cavity axis (endfire modes).

Besides the well-known weak points of the B-L theory, such as the assumptions of

two modes and the independence of those modes, the theory does not easily allow for the

calculation of effects due to competing transitions (internal conversion, emission with

recoil, etc.) and transport effects (photoelectric absorption). Other theories have been

developed which are based on the Maxwell-Bloch equations and allow for the inclusion of

quantum initiation statistics and modeling of the fluctuation statistics. This is not of

particular importance or interest to the y-ray laser problem at the present state of

sophistication and development. What is of interest is that these theories can deal in a

straightforward way with the phenomena of competing transitions and photon transport in

the medium; two problems of great significance to the y-ray laser feasibility study.

The detailed characteristics of nuclear inversion pumping, radiation emission, and

transport through media have an impact on the generation of nuclear superradiant pulses.

These phenomena must be carefully treated in an analysis of the feasibility of nuclear

superfluorescence. We are not interested in the details of specific y-ray laser or

superradiator concepts at this stage, but only in general features exhibiting the differences

between nuclear and atomic systems and we concentrate on those that may not have been

adequately addressed by workers considering atomic systems.

In particular, we feel that the following special issues that differentiate nuclear

superfluorescence from the well-studied atomic superradiance and superfluorescence have

to be addressed.
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1. Short Wavelength of the Emitted Radiation

Atomic transition energies are on the order of 1 eV to 10 eV, and wavelengths on

the order of W03 A to io4 A. On the other hand, nuclear transitions of interest are on the

order of 103 eV to 105 eV, with corresponding wavelengths on the order of about

0.1 A to 10 A . The original Dicke theory of superradiance deals with systems in which the

wavelength of the radiation is greater than the diameter of the volume containing the

individual radiators. It has been generalized to deal with a less restrictive case: the

wavelength less than the diameter of the volume containing the radiators cooperating in the

emission but greater than the interradiator distance. In the case of nuclear radiators, the

condition has to be further generalized, because the interatomic distance of the radiators

may be larger than the wavelength of the radiation.

The issue of the short wavelength of the emitted radiation as compared to the
internuclear spacing (Ref. 10) has been discussed by Trammel. It is generally ignored by
other authors dealing with nuclear superradiance (Ref. 11), although it is certainly
controversial as exemplified by the series of letters to the editor following an article on the

subject by H. Lipkin (Ref. 12). We discuss the problem of shorter wavelengths in

Chapter II of this report in the formalism of the Bonifacio-Lugiato theory.

2. Large Recoil Energy Compared to the Natural Linewidth

A nucleus or atom emitting a photon will recoil with energy ER = E02/2Mc2 where

Eo is the resonance energy, M the mass of the emitter and c the speed of light. A typical

atom with resonance energy on the order of an eV and an atomic mass of 50 will recoil with

an energy of about l0-1I eV, which is much smaller than the typical atomic linewidth of

10- 9 eV. On the other hand, the same atom in a typical nuclear transition of 104 eV will

recoil with an energy of about 10-3 eV, which is orders of magnitude higher than the
typical nuclear linewidth of 10-9 eV. The result is that while the emitting atom is in

resonance with the other atoms in the cavity, the emitting nucleus will be out of resonance

with the other nuclei.

Emission with recoil will be treated in our formalism as a competing process which
has the effect of reducing the excited state population. We believe that in the present stage

of the development of nuclear superradiance this is an appropriate assumption. Under
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certain well understood conditions (M6ssbauer Effect) a nucleus will emit without recoil,
strongly resonate with other nuclei and thus alleviate this problem.

3. High Multipolarity

The transitions of interest in nuclear superfluorescence are generally of high
multipolarity (Ml, E2, M2, or higher) unlike in atomic transitions where electric dipole is
the prevalent mode of emission. All the theories of superradiance known to the authors up
to now have dealt with electric dipole transitions. Complications with high multipoles
could arise in cases where competing transitions occur (Ref. 13). Such considerations will
have to be introduced in future more complete analyses. Problems of high multipolarity
superfluorescent transitions will not be discussed in this paper.

4. Competing Transitions

The effect of several transitions competing for the depopulation of a level has
recently been introduced into theoretical calculations for atomic superfluorescence systems.
In nuclear systems internal conversion is not only common but strongly competes with the
radiation transition in depopulation of low-energy nuclear states. 4 Internal conversion
plays an especially important role in low-energy nuclear transitions and has to be
considered carefully in discussing nuclear superfluorescence. Other competing electro-
magnetic transitions are also common in nuclear systems and can be treated similarly.

5. Electronic Attenuation

For the cases of interest, the linear attenuation coefficient gt is much higher for the
energy range involved in the nuclear transition (103 eV to 105 eV) than in the energy range
involved in the atomic transitions (1 eV to 10 eV). Multiple passes in an optical cavity of a
few centimeters can be achieved while nuclear radiation is limited to a path length of less
than about 0.1 mm. The exact relationship of g and the population inversion in the
generation of nuclear superradiance is very important and has to be carefully investigated.

4 7UTherW Conversion CoeffiCient a .rate of electron emfission can typically range from on the order ofrate of photon emission
10 to 103 in the range of energies of intetst (Re. 14).
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6. Finite Pumping Times

The pumping problem for nuclear SF is severe and pumping times on the order of
the lifetime of the lasing level are usually required. Instantaneous pumping to inversion is
not expected, thus calculations using this assumption are not realistic and have to be
abandoned. Realistic pumping times are important and have to be included in the analysis

of nuclear superrdiance.

7. Geometrical Considerations

Although for the convenience of analysis the acicular geometry (long cylinder) is
very desirable, it may not be realistic in terms of the attainable experimental conditions. •
The acicular geometry permits the restriction of analysis to a single mode emission, and
when the Fresnel number F (F=d2/D, where d is the cavity diameter, I the length and X the

radiation wavelength) is one, guarantees the optimum diffraction limited condition (Ref.
15). To achieve a condition for the active region determined by F = 1 may be difficult
experimentally. Consideration of the feasibility of superfluorescence in a more realistic,
three-dimensional geometry is desired. Some theoretical work on three dimensional
geometries has been presented in recent publications (Refs. 16, 17). Further discussions
regarding general three-dimensional geometries will be left for subsequent publications.

In this paper we will discuss the effect on nuclear superfluorescence of
(1) competing transitions (e.g., internal conversion, emission with recoil, branching
ratios),5 (2) transport effects (electronic attenuation), and (3) finite pumping times using
incoherent sources. The question of the feasibility of superradiance in a system of radiators 0
with separations longer than the wavelength of the emitted radiation is discussed in Chapter
IL The questions related to superfluorescence in a three-dimensional active medium will be
discussed in a future publication.

B. THEORY

Superfluorescence with competing transitions and including transport effects such
as beam attenuation due to incoherent inelastic processes can be modeled using Maxwell-
Bloch equations (Ref. 8) modified to include vacuum fluctuations. Our discussion follows 0

5 In this paper we treat alU of these mechanisms in the same way, assuming their impact to be due to
their effect on die reduction of the inversion only. 0
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the Haake and Reibold theory presented without derivation in Ref. 18. Appendix A

outlines and discusses a possible derivation of the original equations. The analysis in this

section which deals with a modified version of those equations for 3 rather than 5 energy

levels is new.

Corresponding to the excitation level diagram in Fig. 1, the (Ref. 18) system of

differential equations satisfied by the excited population number operators Ni, the atomic

polarization operators R*, and photon field operators is

•N4 = -IN4 +14 (a)
Da

N - (EI~ + 4 2 K3;2 + E3IR 1 + E 3 2 R73 2 ) -r 3 Ni + 7~N4  44 1(b)

SN =+(E•PR;3 +F3 2 R +2 N 2r';N +r
a2 ; ;272 2  2 + t 1(c)

aN1  + 1E + 'R (d)

2= 3 2) E2 R21 + rý 142 +3 2 2(a,b)
c' P4, = (N3"- Ni) 41' -42R:,- [r3 + IRj ei +•!2cd

a(r +E T2)r1r1 R + k
at 1 EI Rý 12 1 2 1  J 2(e,f)

, i"- i(i 1, 2)
P~i 2 N3(a,b)

In eqs. (1-3) the ± superscripts for the fields and polarization operators refer to the positive

and negative frequency components of these quantities. 4ij are stochastic noise operators6

with zero means and second moments that satisfy

6 The stochastic noise operators re defined by their statistics. Polder, Shuurmans, and Vrehen (Ref. 9)
derived the classical noise equivalent sources from a quantum mechanical model. They identified three
distinct components of the EM field, namely, (1) vacuum fluctuations, E-va, (2) Edd or dipole
contributions from different atoms and (3) the self force or radiative reaction, E. which is the dipole
contribution from the local atom. Initially, the only non zero component is Evac. This sets up
correlations in the polarizations of atoms which produces a non zero Edd. The Evac wave vectors
corresponding to the appropriate geometry of the active region (cavity) set up the polarization
appropriate for cooperative emission with those wave vectors. This results in the observed SF
emisson. The Efr field gives rise to the natnum width of the emiusin line only. H-ake and Reiboild
(Ref. 18) use this theory to model noise sources which trigger SF. Their noise source is due to the
incohere pumping mechanism with time constant Tor do natura spontaneous decay frm the excited

state with time constant 173 . In the present development we use the noise source, as described in
equations 4, from the incoherent pumping mechanism for the SF triggering.
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< % (x,t) C. (x',t') > = 7' yB(x - x) So - t) (4)

4 N

34 N
3

92 1T32 g9 T31

10 --- Cr 0 -1N

1 N 0

Figure 1. Energy level diagram for the five-state system modeled by eqs. (1-3).
The two competing SF transition are between upper state 3 and lower states

1 and 2 and are Indicated by g, and g2, respectively. Level 4 populates

level 3, providing the Inversion. The decay rates y, r I, r 2 ,
and ]r1 are given by rnc, (=. ÷ C= and 'c;, respectively.*

"Other depopulation transitions are generally allowed. We indicate only those of interest at present.

The initial values of the operators, referred to the vacuum state for the electromagnetic field,

are prescribed by their vacuum state expectation values:

ý(x, 0) I0 > =E32 (x, 0)10 > =N3 (x,0)10 > = 0

N4 (x,0)10>=1 . (5)

In addition, boundary conditions implying that no external signals impinge on the system

are imposed:
E• (0 t) =o.

The objective is to calculate the mean radiation intensity I(t) (at the right end of the

collection of atoms or nuclei), where

I(t) = < E- (1,t) e* Qlt) > (6)
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Eqs. (1-3) are written in terms of the retarded time so that

tt -L= - Lx = + I - , k = -- where t' and x' are the

normalized time and space coordinate. The real time and space coordinates are normalized

to the superfluorescence time and cavity length, respectively, so that t' = -L. x'x
"SF' =

where t" and x" are the real time and space coordinates. The superfluorescence time is

given by
8wco

ITSF = 3xTO .

3)!pl

I is the cavity length, X is the wavelength of the emitted photon, T is the natural radiative

lifetime, and p is the inversion density of cooperating nuclei. Of the parameters indicated
in Fig. 1, rij give the radiative spontaneous emission lifetime of the state i due to the
transition i -+ j, with corresponding emission rates rij and r 3, r 2 , and r, give the total

single resonator spontaneous incoherent emission rates from states 3, 2, and 1,
respectively. The coupling constants for transitions 3 -+ 2 and 3 -+ 1 are given by g2 and

gj, respectively.

Calculations of superradiant phenomena, described by the general eqs. (1-3) and
the level structure of Fig. 1, using Monte Carlo techniques, will be described in a
subsequent publication. Presently we are interested in studying (1) the effect of competing
transitions such as the incoherent decay process described by the decay rate r"3, which

removes excited state nuclei from the system, (2) the effect of transport phenomena as
included in the model through the linear attenuation coefficient g' in eqs. (3a, 3b), and (3)
the effect on superfluorescence of the pumping rate y.

Equations (1-3) can be solved for some special cases to get insight into the effect of

these parameters on the phenomena of superradiance. With this intent we simplify the

problem by considering levels 4, 3, and I only and drop the noise source EA. The relevant

set of equations can be separated into two groups. The first group describes the formation
of superradiance and consists of

c = f(x.t)E ]-r 3  7(a)

E14 gR~-~E1  7(b)
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The second group of equations describes the population dynamics of the three states and is

used to calculate the inversion function f(x,t) = N3 - N1 ,

aN4' - yN4  8(a)

- 3 + R3 + +31R - 3 N3 + yN4  8(b)

& + 31R3 1)+ r3 3  8(c)

=i +r(e3 31R 3 ,+r

Initially, only level 4 is populated so that

N4(0) = No

N3(0) = N1(0) = 0

and since

N4 + N3 + N, = N0 for all time, (9)

we get

f(x.t) = 2N3(t) + N4 (t) - No . (10)

Equations (7a, 7b), after dropping the subscripts, can be combined to give

I 2 ± (11) [

Assuming that f(xt) is a function of time alone and taking the Laplace transform of (11)

with respect to x leads to

(.1P +S)aff+ E-(! + ) g f]Iff= iE (0, t) + 2F-E (0, t)+g
212

(Ip+ s)•. at'P s- . (12)0

where

R(s) f J ex E(x) dx~
0

and

(s)= f e-s-$4(x) dx 0
0

S
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Taking the appropriate initial condition that

E(x.O) = 0

which implies

R(s,O) = 0

the solution of eq. (12) is

t r tX)(s + vi)

E(s,t)= g f (s,t) e2 ( e • dt' .(13)

where

t
k(t,tf) -- g f fAt") dr" (14)

Since --/ is the Laplace transform of the Bessel function l1 (L21i), ekis is the

Laplace transform of e- 2 j (21rii). Therefore,

Et(xt)-=_g J ( t,t'(x- x') (xx (xt') dx' dt (15)
0 0

The experimentally measured intensity of the superfluorescent emission is given as the

average of the product of E+ and E- at the right boundary, I = 1. From eqs. (15) and (4)

this is given by
I(t) --< E- (1,0 e 01,0 >

0 1 (2 k(tj) (1 - x')

el( 2 x) 2. S(x' - x") 8(t' - t") dx' dt' dx" dt"



N - -.. rt I 4 k(2 ') (I - XI). + ( --• dx' dt'
IN 0 0

0 0

In general, including the nonlinear terms E+R + E- R7, the expression for k(tt') according
to eqs. (10) and (14) is given by

t + No ttYe't e-NT t -)•(7

k(t,t') = 2 j N3(t") dt" + N N(t - t') (17)

because of

N4 = N.e"t (18)

In the linear region of validity of equations (7) and (8), ignoring the E+R+ + E-R- terms,
the population density eq. (8) lead to

t

N3 = J -r(t- N4(t.) dz' 0
0

-y (e't e [ rt) (19)

From eqs. (17) and (19) we get

k(t,t') = J [2N P11) + N4(t"f) -NO ]dt"#

zre

=2yN,3 [O ~ i er'- _e rt ] + o(SLY ýe t' 0Ot-t)( 0
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We next consider the modification of eq. (19) for the nonlinear regime. Defining

S=- x<E-E> ' (21)

Zax

it follows from eq. (7b) that

E+S=-g( +IR-E-)+ giE" ,E (22)

where the fact that the R± and the E± commute has been used. From eqs. (8b), (19), and
(22) it follows that

t
N N _ (-t t) + e (S - E-E ) dt'

3( (23)

Now, defining an average N3 by

3 -<N? 3 > dx

0

eq. (23) can be replaced by

1•3=T<No>_ (-t' _-rt) _of-'t-t)g
I f <N -> ( I (t') dt' -

0 
(24)

where
t1

12 = f e-r('t- f <E-Ee > dxdt"
0 0

For g = o the last tem in eq. (24) disap and the solution to the problem can be written
as an iterative procedure in terms of I(t), the intensity at right side of cavity. For finite
values of g the third term describes a loss due to absorption in the medium.

The third term in eq. (24) will be small for small values of g. For larger values, an
approximation in which the integral of <E-E+> is taken to be proportional to the radiation
intensity I can be used. Then (24) can be replaced b

g e(25)
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where

and 1 is an appropriate length lying between 0 and 1. It has to be determined from test

runs on convergence (1 = 0.1 and 0.025 were found convenient for our runs).

Using eq. (25) instead of eq. (19) in the calculation of k (t , t ') and iterating with

(16) gives us the solution to the nonlinear problem. Appendix B discusses the numerical

approach used in implementing the solution.

C. DISCUSSION OF RESULTS

With reference to eq. (16), we can analyze the effects of

(1) Transitions competing with the SF transition. In this paper we have
concentrated on the first two effects. The modification of the SF pulse due to
finite pumping time will be treated in a subsequent publication. Competing
transitions such as emission with recoil characterized by the recoilless fractionf 0
and electron ejection from the nucleus as characterized by the internal
conversion coefficient a, as well as other processes characterized by the
branching ratio 13, although quite different physically, are treated similarly
here. It is assumed that their sole effect is to reduce the inverted population,

(2) Electronic absorption, as characterized by the linear extinction coefficient g.,
and

(3) The finite pumping time to obtain the required inversion.

There are two first-order effects expected from a finite linear extinction g. One S

effect is clearly expected from eq. (16), because of the exponential factor e-29' which
attenuates the beam as it traverses the medium. This would be exhibited in the experimental
results as a decrease in the intensity of the emitted superfluorescent pulse. The other effect

is a result of the suppressed development of the electric field as expressed by eq. 7. For •

increasing values of p, one expects that a longer time would be required for the generation

of a large enough E to initiate the SF pulse. This would be observed experimentally as an

increase in the time delay, %D.

Equation (16) was used to calculate the pulse shape as a function of the decay rate r 0

and the linear attenuation coefficient g. for g = 0. Figure 2 shows the variation in the
lineshape as r is varied. Notice the expected decrease in the peak intensity and the shift in

the peak position as r increases. Figure 3 shows the variation in the pulse shape as a
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function of g. Notice again the decrease in intensity, increase in the delay time, and

broadening of the pulse as g increases.

1.0 - ....
/ .... • ,/ I'

0.6 / J
/ / .

d

I .. /"
/ ... i *

/ / / ,

0.2
0/

12-12W TIM INU FTS

/ ." /

I / /

(0.2 (./ 1

-,4.. \

s / *

0 0.5 1.0 1.5 2.0 2.5
121463TIME IN UNITS OF F

Figure 2. Superdluorescent pulse calculated with d s 5 cri for 1 9 0 and
different values of r. Curvesa a ll normalized to the curve label (a). The r

values and the relative Intensities em (parentheses) are:
(a) r = 0.01 (1.0)
(b) ]" = 0.2 (0.61)
(c) r = 0.5 (0.30)
(d) r = 1.0 (0.19)

* ~It is instructive to compare the effect of 5.L on lasing and superfluorescence. These

are different phenomena that have been unified in a theoretical description (Ref. 19) but can
be differentiated experimentally as observed by Okada et al. (Ref. 20). In their

experiments, the onset of superfluorescence was preceded by amplified spontaneous
emission pulses as the inversion density increased.
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Figure 3. Superfluorescent pulses calculated using the program described In

Appendix B for I = 50 TiF, r =0.001 i , gr = 1.0 and different values of ;L as
Indicated next to the curves In the figure. The curves are all normalized to 1.
The relative Intensity values are 0.16, 0.11, 0.037, 0.0074 and 0.00073 for S

Increasing values of I.

Our study shows that the effect of beam attenuation (characterized by the linear

attenuation coefficient ii) on the development of lasing is different than its effect on the

development of a superfluorescent pulse. The stimulation cross section as, inversion An*

[= f (x, t) = N3 - NI as in eq. (7a)] and g± are coupled in a linear relation forming the gain
coefficient k which characterizes the lasing phenomena. The Schawlow-Townes condition
for lasing demands that the gain coefficient k = osAn* - g > 0 in order for lasing to take
place. The gain in a system exhibiting amplified spontaneous emission (ASE) is given by

G = eL- l
k1'

For k > 0 gain is observed, but for k < 0 only attenuation of the beam traversing the

medium is possible. In SF inversion An* and attenuation pt interact through the nonlinear

relationship given in eqs. (1-3) and thus their combined effect on SF is more complex.

For SF, inversion (An* > 0), is required to promote the development of the

polarization from the quantum fluctuation, eq. (7), but the effect of pt on the development

of E is only to delay the SF pulse and modify its shape but not prevent it if other effects 5
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such as competing processes do not destroy the inversion. This can be seen from the

solution of eq. (7b) which can be written as

E41(x) - E• 1(O) e" + f e' gR 31 (y) dy

For large gI the first term is unimportant and only regions of the integral for y - x

contribute. However, there is a gradual decrease and not a sharp cutoff or threshold.

Further quantitative investigation of this phenomenon with the complete theory is

necessary.

The pulse shape as a function of initial inversion and the linear attenuation

coefficient g± for amplified spontaneous emission and superfluorescence are compared in

Appendix C. These results were obtained assuming instantaneous inversion. In general,

the ASE lineshape peaks at the natural lifetime and only the relative intensity decreases as

the initial inversion An* or g. decrease. For SF, in addition to these effects, the lines

broaden and shift to later times as An* and g± decrease. For high inversion and low

attenuation, the SF peak is much narrower than the natural lifetime z and appears much

earlier than the ASE pulses.

The effect of the linear attenuation coefficient (on the SF pulse shape) has been

considered as arising from the limitation on the effective cavity length L, and thus on the

maximum number of cooperating emitters N (Ref. 21). This effect would be observed as

an increase in the delay time TD, an increase in the width of the pulse T'R and a decrease in

the intensity of the pulse. The inverted pendulum expression for the SF pulse could then

be modified to take this into account by assuming that N, TR, and TD are functions of g,

and the pulse is given by

I(t) = N(p) sech2 [D (t- '] (26)

The effect of gi in eq. (26) is assumed to be in decreasing the active volume by a factor of

0
O, where 0 is an ad hoc parameter.

It is interesting to compare the results from the reduced effective volume

assumption represented by eq. (26) with the results obtained with the modified Maxwell-

Bloch equations, including random sources [eqs. (7a, 7b and 8a, 8b, 8c)]. We assume that

the modified Maxwell-Bloch equations model SF from an incoherently pumped two-state
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system correctly while eq. (26) provides a simpler intuitive but ad hoc model. The SF

pulses obtained from eqs. (7, 8) for five values of g are plotted in Fig. 3 with all peaks

normalized to 1.0 independently. The widths, intensities, and delay times of these pulses

are given in Table 1.

Table 1. Pulse Parameters Derived from Figure 3

'ED I W A

0 6 0.16 5.0 0.80

2 8.5 0.11 6.5 0.72

10 18 0.037 13.5 0.50

20 29 0.0074 23.0 0.17

40 55 0.00073 46.0 0.034

- attenuation coefficient
tD - delay time

I - intensity

W - width

A - area under peak (I x w)

The delay time is increased because the effective length L of the active region is

decreased to L' - for g >> 1. In Figure 4 we compare the delay times 'D calculated

from equations 7 and 8 (pulses shown in Fig. 3) with those computed by assuming a

- -K(g+) (N
reduction in cooperation number from an increase in g given by % + = N I N r +0

The horizontal arrows in Fig. 4 indicate the reduction in g± required for % = TD and

values of 0 give the actual reduction factors. In Figure 5 we plot I and E as a function of

A 0
gI to compare the total emission calculated from the equations 7 and 8 with the expected

1
emission if the total volume of cooperating nuclei were decreased by I + l" A reduction

parameter of 0 = 3.1-6.7 for gt = 5 to 20 represents consideration of an effective average

0
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length corresponding to the notion that not all the photons travel the total length of the
cavity. 7 These findings compare qualitatively with the results of MacGiUivray and Feld
(Ref. 22) who calculated the effect of beam attenuation in order to explain their
experimental results on HF gas (see their Fig. 5). Their calculations show an increase in
the delay time and a decrease in the beam intensity as the attenuation increases. Specifically
for L = 1, A = 2.5 cm- 1, and 5.0 cm-1 their results show about 40 percent and 60 percent
increases, respectively, in the delay times from the gi =0 delay time. Our results (Fig. 5)
show larger delay time increases (about twice their amount) but an exact quantitative
comparison was not expected because other parameters in the two calculations are different.

I

IF

7 h Mreddwdon pramtelr ofO 0 3.1-6.7 is obtained from the relatonship eo-1- e• when 1 =1,
and -g =5ad20. 9
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D. SUGGESTED EXPERIMENTAL INVESTIGATIONS

Our studies on pumping of isomeric levels (Ref. 23) and the nuclear SF calculations
discussed here indicate that experiments examining the interaction of the linear extinction
coefficient gi, the competing phenomena characterized by r 3, and finite pumping times
characterized by y should be undertaken. We propose experiments performed in the optical
or longer wavelength regime where SF has already been observed, be undertaken to check
the theory developed here. Systems composed of CH3F, HF, Na, Cs, or TI could be used
for this purpose since SF in them has already been observed. Introduction of varying
concentrations of inert gases could be used, for example, to study the dependence of SF on
gi in a gaseous medium. Variation in the length and intensity of pumping laser sources
could be used to check the effect of the pumping rate y, and the effect of competing
transitions could be studied by controlling the inversion of different transitions through
selective population of the lower levels (2 and 1 in Fig. 1), or through manipulation of
relaxation rates through temperature or exteral fields.8

The second set of experiments we propose deal with nuclear transitions and the
observations of modifications of the nuclear decay rates. These experiments can be done
with the isomers identified in Ref 22. Pumping by thermal neutrons to produce inversion

in a symmetric sample would be followed by observation of the total count rate from the
isomeric level using a 4x detecto to catch most of the radiation. Although non-cooperative
emission would probably predominate, and only properly oriented and prepared small
regions of the sample may produce SF pulses, these may be enough to be observed
through decay curve modifications. We expect these experiments with arbitrary sample
geometries would be much easier than single-whisker experiments usually described in the
literature. Further, more detailed discussions of these two types of experiments will be
presented elsewhere in future publications.

E. CONCLUSIONS

We have identified several features of nuclear transitions and radiation transfer
through materials which have to be incorporated into an SF theory in order to determine the
feasibility of nuclear SF. The Haake-Reibold model of SF was generalized to treat
transport phenomena and used to study the effects of competing transitions, electronic

Further discussions of the effects will be left to future publications.
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attenuation of the photon beam, and finite pumping time on the development of SF pulses.

It was determined that the electronic attenuation slows down the development of the SF
pulse (increases %b) and lowers the emitted intensity but does not produce a hard threshold

on SF as it does on ASE, as characterized by the Schawlow-Townes gain requirement.

The competing transitions like (1) internal conversion, (2) branching transitions producing

the emission of photons, and (3) y emission with recoil (non-M6ssbauer transitions) reduce

the SF intensity but do not affect a strong shift in the pulse emission time until the rate of

these processes approaches the SF delay time. All of these predictions, as well as the effect

of the finite pumping time and geometry should be investigated further.

Finally, as a way of investigating the effects of electronic attenuation, competing

transitions, and finite pumping time on SF, we propose that experiments at longer

wavelength be performed using systems and conditions under which SF has been

observed. Such experiments could be much more easily performed than nuclear

experiments and would be valuable in verifying the theoretical results presented here.
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H. SHORT WAVELENGTH SUPERFLUORESCENCE

If wavelengths associated with nuclear transitions are smaller than interatomic
spacings, efficient radiation can only occur when conditions for Borrmann mode
propagation are satisfied. Since superfluorescence is also necessary, the effect of
wavelengths shorter than interatomic spacings on superfluorescence is also of interest. In

particular, it is of some interest to determine the extent to which conditions for

superfluorescence at short wavelengths may be in conflict with those for Borrmann mode

propagation.

As observed in the introduction to Chapter I, in nuclear superfluorescence

wavelengths associated with transitions of interest will, in fact, be smaller than the spacing

of the contributing nuclei. The behavior of a similarly spaced classical periodic array of
coherent sources suggests that for a potentially superfluorescent crystal, regarded as an

array of identical nuclei, a first-order effect of such a short wavelength would be to limit
collective radiation to certain directions. In fact, the relatively simple model of atomic

super-fluorescence due to Bonifacio and Lugiato (Refs. 4 and 24) has sufficient scope to
confirm the existence of such an effect.

The Bonifacio-Lugiato superfluorescence model for two-state atoms in a rectangular
crystal lattice, as elucidated in Refs. 4 and 24, considers only the case in which the emitted

radiation wavelength is larger than the atomic spacing. However, this limitation is not
inherent in the model, despite its simplistic treatment of propagation and other possible

geometrical effects.

Reference 25 treats the case of nuclear transitions, for which the wavelength is
smaller than the atomic spacing, but the paper's discussion of superfluorescence is less
informative than that of Refs. 4 and 24. This is partly because the Bonifacio-Lugiato

model uses a representation for the collective excitation operator that relates it to the lattice
structure, whereas Ref. 25 uses a representation that relates the operator to the phase of the

emitted photons at the lattice sites.

In particular, when the wavelength of the emitted radiation is less than the atomic

spacing, the B&L model implies that superfluorescence can only occur when the
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wavelength and the crystal lattice structure are related in a certain way. In fact, the required

relation is also sufficient for coupling of the emitted radiation to a Borrmann mode.

Reference 26 gives an analysis of superradiance that, like the B&L model, relates

the collective excitation to the lattice structure and should therefore be capable of yielding

the short wavelength superfluorescence conditions. Because its treatment includes more

geometrical detail than the treatment of Refs. 4 and 24, for the long wavelength case 0
Ref. 26 is, in fact, able to relate the spatial pattern of the radiation emitted by the collective

atomic array to the characteristic shape of the active volume. The analysis of Refs. 4 and

24, however, is restricted to the case in which the active volume is a thin needle.

On the other hand, Ref. 26 shows that the needle shape provides the maximum 0

gain, albeit in a single direction. Thus, to the extent that it is possible to implement, the

needle is presumably the preferred shape for a superradiant structure. Therefore, it seems

useful to consider the consequences of the B&L model for the short wavelength radiation
that characterizes the nuclear case. 0

The interaction Hamiltonian originally introduced by B&L has the form

N

HH= I - gk { a r-exp[i(0°- °)t-ik'xj-H.C." , (27)

where k is the emitted photon wave vector for a particular mode, xj is the position vector of
the jth lattice site, ak is the corresponding photon creation operator, wo is a mean reference

frequency, and r is the de-excitation operator for the atom at the jth lattice site. B&L also
3

define the reciprocal lattice vectors a, each component of which has the form (2,n/L)n, n =

0, 1, ..., N - 1, where L is the corresponding lattice dimension. They define the collective

excitation and de-excitation operators R±(a) as functions of a by

N
R±+(a)=Ix•exp(±ia.x.) (28)

j=1

from which it can be shown that

j 1 1 R± (a) exp (Ti a .x-) (29)
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On substituting eq. (29) into eq. (27) it follows that

I

H . (30)
ý K

where

N(,t)--1 exp (ihl- x. ) exp [i (co. - w.o) t ](31)

j=1

The time-dependent factors in eq. (31) are separated out on the assumption that they can be

replaced by an average over all atoms and that, because the frequencies " associated with

the individual atoms are uncorrelated, they can be removed from f (1T , t) and subsumed in

the coupling constant gk, which then becomes time dependent. This time dependence of gj,

is a way of introducing inhomogeneous broadening.

At this point, B&L introduce the assumption that the atomic spacing, given by

d =L/N,

is much smaller than the photon wavelength, which implies that the function f(TI) (wherein

the time dependence is no longer indicated for the reason just noted) is large when i

vanishes and is otherwise small. However, if this assumption is not made then f(tj) will be

large whenever i" xj = 2xuDj, -j = 0, ± 1, ... and otherwise small.

The interaction that results in photon emission when cooperative de-excitation of the

atoms takes place can only occur when f(k - a) in eq. (30) is not negligible for some value

of k and a, i.e., when
(k - a). xi = 2xv , (32a)

where uj is in the set: 0, ± 1, ..., which implies that

d/%-n/N=fn, 0,n1,...,N-1 , (32b)

where u is in the set: 0, ± 1, .... In eq. (32) it is tacitly assumed that the propagation

direction is along a narrow, needle-shaped active volume, in which only a single plane

wave photon mode is supported. More generally, X should be interpreted as Xj the photon

wavelength divided by the component of the unit vector in the propagation direction along

the lattice direction defined by the xj.
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It follows from eq. (32b) that the possible values of u must be non-negative. Thus,
X = L/(Niu. + n.), O<n <N, DŽ 0 . (33) 0

On setting ij = 0, 1, ... in succession it follows from eq. (33) that for uj = 0,j>d,

for vj = l,d>Aj>d/2, for j = 2,d/2>,j>d/3, etc. That is, for any given photon wavelength
one and only one value of u exists that will satisfy the required condition. 0

Reference 25 gives as the condition for a Borrmann mode the relation

Ik-al = Ikl (34)

for some reciprocal lattice vector a. To satisfy eq. (34) it is sufficient that k = a' for some
reciprocal lattice vector a', 8 a condition that eq. (33) implies. That is, the condition implied

by the B&L model for superradiance in a crystal is sufficient for coupling to a Borrmann
mode, the propagation direction of which will be determined by the ratio of the wavelength
X to the atomic spacing d in accordance with eq. (33).

8 Then, e.g., o = 2a will satisfy (34). •
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M. USE OF A HEAT SINK TO PROTECT THE LASING
MATERIAL AFTER UPCONVERSION

A. INTRODUCTION

It has been recognized for a long time that heating during the pumping stage would
pose a serious problem for a y-ray laser (Ref. 27). Avoiding high temperatures is crucial,

since the Mossbauer Effect will be needed to preserve coherence among the photons. This

restricts the temperatures of operation to well below the Debye temperature. One recent

proposal to get around this suggests looking for an isomer with a nearby state at slightly

higher energy (Ref. 28). The isomer can be slowly pumped without heating problems, and

the lasing then triggered by rapid "upconversion" to the nearby state. This would lead to a

single-pulse laser.

We have shown previously that upconversion with 100 eV to 10 keV photons will

lead to catastrophic heating via the photoelectric effect (Ref. 29). We have also presented

preliminary calculations which indicate that the heat cannot effectively be conducted away

(Ref. 30). In this paper we show that the heating problem gets progressively more severe

with decreasing photon energy all the way down to the ionization threshhold.

Furthermore, in this chapter and the next we confirm that conductive cooling of the lasing

material does not appear to provide a solution. The essence of the problem is that heat

sinks with sufficient heat capacity to store the heat from the photoelectric heating of the

lasing material are so large they generate and trap enough photoelectrons themselves to heat

up to temperatures where they are useless.

Before presenting the calculations in the next section, the physics underlying the

results will be sketched. There are three dimensionless ratios that largely control heating

effects. The first is the ratio of the energy required per atom to melt a sample or heat it to

the Debye temperature compared to the energy of the nuclear excitation in the

upconversion. Specific heats of melting are orders of magnitude smaller than the lowest

known nuclear transition energy (73 eV). We will consider energies as low as the

inonization threshold, but these energies are still large compared to the energies required for

melting or heating to the Debye temperature.
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The second and third ratios characterize the relative probability of upconversion of
the nucleus versus photoionization of the atom. For ideal beams tuned to the nuclear
resonance energy, the relevant ratio would be the photoelectric cross section divided by the
nuclear resonant cross section. For ordinary nuclear transitions, involving keV energies or
greater, very small leakage of the upconversion energy will destructively heat the sample
consequently. For very low energy transitions, should any exist, nuclear resonance cross
sections are very small, and the photoelectric cross sections comparable or even larger.
More energy goes into photoelectric heating than into nuclear upconversion.

Finally, in the real world, photon beams have finite widths. These beams are very
broad compared to the nuclear states. The ratio of the photoelectric excitation to nuclear
excitation will always be higher that the ratio of photoelectric to resonant cross Fections by
approximately the ratio of beam width to resonance width. For current beams, this leads to
enormous effective increase in the photoelectric cross section.

Addition of a heat sink to conduct away the energy fails because the heat sink itself
is heated to high temperature by photoelectrons produced within either the heat sink or the
lasing material. Basically, viewed as a function of the radius of the heat sink, by the time
the heat sink is large enough to handle the heat and electrons from the lasing material and

still remain at low temperature, it is so large that the direct photoelectric heating of the heat

sink is fatal.

B. CALCULATIONS

We want to consider the temperature rise in a heat sink used for temperature control
of the lasing material in a 'y-ray laser. The essential properties of the heat sink are good

thermal conductivity and low photoelectric cross section, with the latter being most

important. For this reason, we have considered lithium as our heat sink material. For the
lasing material we continue to base our model on the 14.4 keV M~ssbauer transition in 0

Fe57 (Ref. 29). Note the calculations use the solids with the lowest photoelectric cross
section and the highest Debye temperature, which is the optimum combination.

In this section, we will compute the temperature of a Li heat sink itself, under
various assumptions about the upconversion transition in the lasing material. There are
four sources of heat. First, heat produced by the photoelectrons in the iron which is
conducted to the heat sink. Second, if the photon energy is high enough, the photo-
electrons produced in the Fe will not be trapped there. They will continue out into the Li,

where they will continue to deposit energy. Assuming no change in dE/dx, the energy
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deposition will be linear in the path length in the lithium. The energy deposition per atom,
or the temperature increase, will vary as the reciprocal of the diameter of the heat sink.

These first two contributions favor a large heat sink. The direct heating due to photo-
electrons produced within the lithium itself increases quadratically with the diameter of the

heat sink, and favors a small heat sink. Finally, as the residual ion from which the electron
* was removed returns to its gound state, energy from photons and Auger electrons is

deposited. These contributions are assumed to have radiation lengths characteristic of
100 eV photons, and have a total energy deposition limited to the initial photon energy

minus the photoelectron energy.

* The baseline calculation assumed a 0.0lg Fe wire embedded in a Li heat sink.
Borrmann reduction of the photoelectric effect by a factor of 100 was assumed for both
materials. The probability of upconversion of the Fe57 was held constant at 1 percent. The

basis for these choices is described in Ref. 29.

Assuming the number of lithium atoms is large compared to the iron atoms, the total
energy deposited per atom of Li,Q, can be written

Q = PPE [)E r., a- 2PE

dE ag PFe)

g(Fe) aF.dx U2

+ (E.7 - E) (1-exp(-aLatA))]"

PpE is the probability of producing a photoelectron per iron atom in the lasing sample. For

a given size iron sample, this depends on the beamwidth, and the energy of the transition.

dE/dx)y is the energy lost by the electron per unit length in material y (Ref. 31).

Technically, the two values for Li should be different, since iron and lithium produce

different energy photoelectrons. The smaller value was used in all cases in keeping with

our neglect of the increase in dE/dx as the electron slows down. The radius or width of the
material y is ay, and the number density py the reciprocal mean free paths for the photo-

electrons labeled gt(y), and the radiation length characterizing the low-energy photons and

Auger electrons is aRAD (Ref. 31).
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In the above expression, the four terms correspond to the four physical sources

discussed above. The optimum value of a can be found by differentiation. For incident

photons with about 10 keV energy, the second and third terms are dominant. This leads to

the approximate result

a a.3/p.(Fe) PyFeVa -(Li) PLi

=0.32g.

A numerical solution to the minimum heating leads to values of aLi/aFe around 30,

so we used aLi = 0.30 pim in these calculations. The overall energy scale is set by the

probability of the photoelectric effect occuring per iron atom. This depends on the size of

the iron sample, the upconversion percentage, the relative sizes of upconversion and

photoelectric cross sections, the Borrmann reduction of the photoelectric effect, and the

photon beamwidth. We assume a 0.01 pjm Fe sample, and Borrmann reductions of 100 in

both Fe and Li. These choices are discussed in our earlier work (Ref. 29). The physical

cross sections are known (Ref. 32). The essential remaining parameter is the beam spread,

or more properly, the ratio of the beam spread to the width of the nuclear state. We have

used 106 as our baseline value. By comparison, the width of the 14 keV state in Fe57 is

seven orders of magnitude smaller than the smallest beam spread ever achieved in this

energy region.

Using 106 as our value for the ratio of beam spread to intrinsic state width, we find

approximately 0.25 eV/atom energy depositon in Li, corresponding to a temperature of

around 800 K. This temperature is well above the Debye temperature of any material, and

clearly does not represent a solution to the heating problem. Improved beam resolution

does allow for a solution. For a beam spread of 105 times the intrinsic state width, the

heating would be minimal, and the heat sink would work. (See more detailed calcualtion of

this case in the next section.) However, the improvements in beam resolution must be

accompanied by dramatic increases in intensity before this becomes feasible. Current

beams have only a few tens of photons per typical nuclear state width.

As the energy decreases, the photoelectric cross sections increase, except at shell

crossings. The rate of energy loss increases, and the width of the nuclear state decreases.

These features all tend to make the heating get worse as the energy decreases. For the case

under consideration, the peak resonance and photoelectric cross sections are plotted as a

function of the resonance energy in Fig. 6. The peak resonance cross section is computed
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asurmg a nuclear structure matrix element equal to that of the 14 keV transition in Fe57,

and incorporating the energy cubed phase space factor in the excitation width and the
wavelength squared factor in the cross section.
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Figure 6. Resonance and Photoelectric Cross Sections

With the exception of the shell crossings, the heating problem gets progressively

worse as the energy decreases. Even at the K-shell crossing, the situation is no better than

at 10 keV. The next physical threshold at which this situation could change is the

ionization threshold, at around 10 eV. Below that energy, it might be possible to upconvert

a nuclear state with a laser if such a low-energy nuclear transition existed.

C. CONCLUSIONS

Upconversion of an isomer to a nearby excited state for the purposes of initiating
y-ray lasing has been investigated from the point of view of photoelectric heating of the

lasing material. This has long been known to be a serious problem, because it is necessary

to maintain temperatures low compared to the Debye temperature in order to exploit the
M/•ssbauer Effect and achieve coherence.
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In the 10 keV regime, nuclear resonance cross sections are large compared to

photoelectric cross sections. Nevertheless, available beams are so wide compared to

nuclear intrinsic state widths that the photoelectric heating would destroy a sample before

1 percent upconversion was possible. This is true even with substantial suppression of the

photoelectric cross sections via the Borrmann Effect. To achieve upconversion without

excess heating would require a beam with 1015 photons/burst with a 0.005 eV spread. As

the energy decreases, the requirements on the spectral resolution become more severe, until

the ionization threshold is crossed and the photoelectric effect vanishes.

Upconversion of nuclear states in the 10 eV to 10 keV energy regime will not be
possible without improvements of several orders of magnitude in both beam intensity and
beam resolution. This conclusion cannot be evaded by resort to a heat sink, because any

heat sink large enough to remove sufficient heat from the lasing material would be so large

that it traps too much heat itself.
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IV. BLACKBODY NUCLEAR SPECTROSCOPY

A. INTRODUCTION

One can imagine two approaches to building a y-ray laser. One could induce decay

by manipulating the lifetime of a long-lived state, or one could pump nuclei up to a short-
lived state. One difficulty with the second process is that power requirements, and
attendant heating and sample destruction problems, make pumping of nuclear levels

infeasible. This can be partly evaded by using an isomer, which can be pumped slowly,
without excessive heating or power requiremens, in order to store most of the energy to be
released by the laser. Subsequently, lasing can be initiated by another pumping step,
sometimes called upconversion, which is easier to accomplish.

When upconversion from an isomer is examined more closely, it becomes clear
that, at least for transitions in the 10 eV to 10 keV region, heating of the sample due to the

photoelectric effect is still a problem. We believe this is a solid result, demonstrated by both
"back-of-the-envelope" and detailed analyses reported previously. Nevertheless, the result
is controversial; we believe this because other workers have asserted that in the 50 keV

region heating will not be a problem. We suspect that the heating problem at higher x-ray
energies will depend strongly on Z, and may hinge on the feasibility of conductive cooling
with low Z materials. These are worthwhile questions for further analysis.

Here, however, we look at the other end of the energy spectrum. Below about
10 eV the photoelectric cross section vanishes because the available energy is below the

ionization potential. As a result, the heating will drop precipitously. This has motivated us

to consider how one would fimd nuclear levels with short lifetimes located near isomers.
By "near" in this context we mean below the ionization threshold, so we are talking about

"optical nuclear transitions."

The existence of nuclear energy levels with short lifetimes lying near longer-lived

isomeric levels has not yet been shown experimentally, due to the present limitations of

nuclear spectroscopy, but theoretical models anticipate their existence. These short-lived
states are essential to proposed two-stage pumping schemes for the development of y-ray

lasers, where the nucleus is "pumped" from the storage isomer to the nearby level from
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which the lasing transition can take place. For this reason and for pure research purposes,

various studies have been done on possible methods of locating such energy levels.

Previous studies on the feasibility of verifying the existence of these transfer levels

have included work done by R.C. Haight and G.C. Baldwin (Ref. 33) of the Los Alamos
National Laboratory (LANL), and E.C. Zimmenmann (Ref. 34) of the Institute for Defense
Analyses (IDA). The Baldwin and Haight study looked at the prospect of using broadband
radiation to excite the transfer level. Short pulses of blackbody radiation produced by a

laser-target interaction would be used to illuminate the isomer, and a small band of this
spectrum would convert the isomer to the transition level. It was concluded by Haight and
Baldwin that this method would prove to be too restrictive to be widely useful. In order for

a sufficient amount of the isomer to be converted to the transfer level in 10-9 s (the length

of typical laser pulses), the multipolarity of the transition could only be El or M1, the
transition strengths would need to be close to the single particle value, and the transition

energy would be limited to the range greater than 100 eV for the transition strengths to be

large enough and less than 10 kBT for the photon density to be high enough.

The method proposed by Zimmermann requires heating long-lived Mbssbauer

isotopes to high temperatures. This should thermally excite a sufficient amount of the
isomer to the transfer level to noticeably increase the rate of decay to ground state. An
estimate for the value of AE (the energy separation between the two levels) could be found

by slowly increasing the tempamt from 300 K and noting increase in the decay rate with

temperature. This method is based on the assumption that rapid thermal equilibration of the

two excited states holds, and if this assumption is incorrect, the increase in the decay rate at

elevated temperatr might not be noticeable.

This study examines a potential method for locating transfer levels which uses a

cavity (either a blackbody cavity or a coherent source cavity) filled with a dilute atomic
vapor, containing the requisite isomeric energy levels. A vaporous substance is used so as

to avoid unwanted solid-state material effects. The isomers will be illuminated with either

the continuous photon spectrum associated with the radiation from a blackbody, or with the
radiation produced by a coherent, tunable source (such as a microwave power source or a

laser). Either of these methods of photoexcitation should produce an intense photon flux,

and both methods would be relatively cheap and easy to use.

For ease of calculation, this study has chosen a doubled count rate as a benchmark

value, i.e., a short-lived nearby energy level is assumed to have been successfully located

when the induced decay rate is equal to the spontaneous decay rate.
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This method, unlike that proposed by Haight and Baldwin, allows for a longer

count time and therefore a more gradual heating of the isomer. This study assumes the
isomers will be heated to between 1000 K and 5000 K. Unlike the method proposed by

Zimmermn, the thermal equilibration is calculated rather than assumed. Another possible
advantage to using this method is that the energy of the transfer state need not be known to

be within any specific energy range, it can be searched for over a broad range of values.
Transfer levels for more than one isomeric level can be searched for simultaneously, as

long as the energies of the isomers associated with the various target nuclei are distinct.

For a blackbody cavity, the count rate is given by

AH-=JcnkcT(k)dk.
0

where cnk is the photon flux in photons/cm2 .s.Ak, which for a blackbody is

1 I lck Ecnk=c-"
KN= -2 eX--l kB kET j

and a(k) is the Breit-Wigner cross section for low-energy photon scattering

= r. ri

2K (EEO) 2 + (F/2)2

whea re, ri, and rt are the elastic, inelastic, and total widths; E and Eo are the energies of
the particle and the resonance; and X and AO are the wavelengths of the particle and the

resonance. Therefore, the count rate is

4W k2  c __ ._____

fk 2 2 dk

We assume that the inelastic width is approximately equal to the total width (F7 =-rt), and

that the elastic width is

r.-=2.1 x '1O

where Ey is the decay energy in eV. This assumes an MI transition with a strength of

1 Weisskopf Unit, characteristic of the expected width of a strong single-particle magnetic

dipole transition.

The count rate integral will have non-negligible contributions at k = 0 (E = 0) and at

resonance (E = Eo). This motivates us to divide the total contribution into two pieces, i.e.,
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S= dNr•4 dN' .The motivation for this is that the low-frequency and on-
dt dt dct

resonance contributions are physically quite different, and the low-frequency modes might

be eliminated or damped in a plasma. If possible, we would want to neglect them. This

proves to be sensible in the region 4kT < Eo < 20 kT; for Eo above 4 kT there is a
minimum between the zero-energy and resonance "peaks." For Eo above 20 kT, the
exponential decrease of nk begins to overwhelm the resonance contribution. 0

Assuming that (E - Eo) >> F1, (i.e., far off resonance), the zero-energy peak
contribution to the count rate is approximately

dNe rt T2 20-2) •
LL-k 7 (2.1×x10

This result is obtained by replacing the full expression for o(k) with the zero-energy

coefficient of l/k, and evaluating the resulting integral analytically. This eliminates the

resonance peak at E = Eo from the calculation. Since the enhanced decay rate is inversely
proportional to the mean lifetime of the excited state, in order to double the spontaneous

decay rate we would need

11 = -/C* %'1)2 (2.2 x 1020) ,

where 1/I* is the reciprocal of the excited state lifetime, which, according to the energy-

time uncertainty principle, satisfies the relation 1/r < l/h. Therefore, we have
Cx* (6.1 X 1021) (100T2

Thus, we would require an isomer with a mean lifetime some 20 orders of magnitude

greater than the excited state lifetime. In general, the greatest increase in decay rate that

could be expected would occur if the MI transition connected nearby states where the lower
state had a primary decay mode of multipolarity M (L + 1) and the upper state decay by 0

multipolarity E (L) (see sketch below).

M (L+1) E(L) E-f E0+

Again, using the Weisskopf estimates we find for the ratio of radiative widths
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10 19rE(L) 10

ff both transitions are of energy Ey (in eV). In order to achieve the needed enhancement we

require

rEO.) > 6.1 x 1021 1000- 2

rM(t+I)FT

which means that the transition energy of the isomer to the ground state, Ey, must be

E 6.1 x 101 -1, 0.1 eV for T = 2500 K
6.1lx 1021- uJ

Grouped states would thus be required in the sense that the isomer and the higher-lying,

rapidly-decaying state would both need to be very close to a third state to which they both
could decay. This appears sufficiently implausible to us that we will not pursue it further.

The contribution of the decay rate integral from near-resonance (within m widths) is
e+0 mr

L= j cn a (k)dk

Provided only that kBT is large compared to the total width, nk can be factored from the

expression. The count rate can then be approximated by the full integral

dNres 0 rf,2d4 0.2 1 e___= cnk 0 ) (k) dk = 4 (2.1 x 1 )-0 EkT

Figure 7 shows the lifetime (reciprocal of the count rate) as a function of the energy for
values of the temperature ranging from 1000 K to 5000 K. The increase in lifetime at

IV-5



LEGEND
o 1000 KELVIN

0- 0 2000 KELVIN

A 3000 KELVIN
+ 4000 KELVIN
x 5000 KELVIN

LiJ

-J

1000 10' 1102
ENERGY (eV)

Figure 7. Lifetime vs. Energy for Various Temperatures
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lower energies is due to the decrease in the Breit-Wigner cross section which goes to zero
* as the energy of the transition goes to zero. The increase at higher energies is due to the

decreasing photon flux, which is a characteristic of the blackbody curve at high energies.

For a blackbody source at 5000 K, an excited state lifetime of 1 year corresponds to an

energy of approximately 6 eV. Figure 8 shows the lifetime as a function of the energyfor a
• blackbody at 5000 K and a blackbody at 50,000 K. This curve supports the Baldwin-

Haight conclusion that the use of short pulses of blackbody radiation would not be useful

in searching for the desired short-lived energy levels. A lifetime of 10-9 s would be well
off the bottom of the curve shown, requiring an unreasonably high blackbody temperature.

From this we conclude that photoexcitation using a blackbody source would be a useful

method for searching for low-excitation transitions, based on an isomer, for energies from

0.1 to 10 eV.

The results of these blackbody calculations can be summarized as follows:

1. The contribution to the excitation is dominated by the photon's near-resonance.

2. A nuclear state approximately 0.1 eV to 10 eV above an isomer could be
detected in a blackbody cavity if it had a fairly strong M1 transition connecting
it to the isomer. This depends in detail on the strength of the transition and the
lifetime of the isomer.

3. These results are consistent with those of Baldwin and Haight in the sense that
even at 50,000 K, there is scant probability of a count after 1 ns.

For photoexcitation using a coherent power source (e.g., a microwave power

source), we assume that the photon flux follows a Gaussian distribution such that

nk=Cl, f k- dk

where C1 is a normalization constant and Wk is the width of the peak. Integrating over all
possible wave numbers, we find that the total photon flux is

nk -=C1 4-HWk

The energy flux rate is the product of the photon flux and the energy per photon:

energy flux rate = C1 " Wk cko
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Equating this with the power per cross-sectional area of a microwave cavity, C1 is found

tobe

A 1 eVC, =P 1.60 x W019 J ( WE cko1

i'J) r4XWkffk

where P is the power of the source in watts, and A is the cross-sectional area of the source

cavity. For a 1-kW power source with a cross-sectional area of 100 cm 2 , C1 is

approximately 1.78 x 1027/k;. One of the factors of ko comes from the assumption that

the width of the peak is a function of ko (we used Wk = ko/1000) and the other factor of ko

comes from the energy per photon, E = hcko. Therefore, the total induced decay rate

corresponding to the use of a coherent power source is

dN = (5.24 x 103 ) "3t2 c2 h2 / E0
dt

The possibility of using other types of coherent sources, such as lasers, should also

be considered. Figure 9 shows the lifetime as a function of energy for various types of

sources. Included are a 1-kW coherent power source, characteristic of a commercially

available microwave, and various types of continuous wave lasers, along with the ranges

of energies over which they are tunable.

We find that below about 1 eV a tunable, relatively high energy resolution (i.e.,

coherent) source would be more effective than using blackbody radiation. At very low

energies, microwave sources would suffice. Near 1 eV, IR lasers would be needed. For

this search not to be hopelessly tedious, it would be necessary that lasers be available

which were tunable over a few percent of their centroid energy, at least. At present tunable

lasers are "tunable" over a few natural line widths. This situation is expected to improve,

perhaps in the next five years.

B. SUMMARY

Upconversion schemes for a y-ray laser would be greatly aided by near-degeneracy

of nuclear levels connected by an M1 transition of appreciable strength. We refer to such a

transition as an optical nuclear transition. We have investigated mechanisms for locating

such states. At present, the best technique would be to heat a sample of the isomer in a

blackbody cavity and look for enhanced decays as a result of photoexcitation of the nearby

state. This would be feasible in the energy region from 0.1 eV to 10.0 eV.
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For energies below about 0.1 eV, the cross section is too small for this approach to

* be feasible. The transition could be driven with commercially available coherent sources, if
the energy was right. Coherent sources tunable over a wide range are expected in the fairly

near future, at which time the search for optical nuclear transitions could proceed down to

very low energy.

The efforts that would be required using coherent sources at present seem

unwarranted. Driving the transitions with blackbody radiation, however, should be a fairly

cheap, easy experiment which might produce some interesting nuclear spectroscopy, in
addition to advancing the feasibility of the y-ray laser.
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V. ENERGY DISSIPATION DURING PUMPING OF
y-RAY LASER

A. INTRODUCTION

Upconversion of an isomeric nuclear level to a short-lived nearby level suitable for
stimulated emission is currently the most popular concept for producing inversion in a

nuclear system (Ref. 3). The pumping mechanism can be either accomplished through a

direct interaction of electromagnetic radiation with the nucleus (Ref. 35) or through an
intermediate step involving first laser excitation of electrons followed by energy transfer
between atomic electrons and the nucleus (Ref. 36). For both mechanisms, large electronic
absorption of the laser beam could produce material modification resulting at least in a
reduction of the Mbssbauer and Borrmann effects and possibly in destruction of the

crystalline structure of the sample. Sparrow (Ref. 37) has estimated the heating effects as a
function of pumping beam intensity, width, and energy using thermodynamic arguments.
He also calculated the effect of a heat sink in reducing the temperature rise (Ref. 38).

The main purpose of this chapter is to extend the previous calculations of
D. Sparrow (Refs. 30, 37, 38) to more realistic geometries, including different material
combinations and, most importantly, to calculate dynamic or transient effects and study the
approach to steady state. The second purpose is to use a general approach, applicable by a

change of one input parameter, to rectangular, cylindrical and spherical geometries, to the
analysis of heat conduction problems specilized to the cylindrical case.

This approach is valid for general, time-varying, extended heat sources. This
capability will be useful to investigate the heating problem and the effectiveness of
proposed solutions.

To carry out this program we address the general problem of heat generation in

specific regions of a system and its transfer to other areas of the system through the process

of diffusion. The computer program used to perform the calculations is based on a finite

element technique described in Appendix D. The code is written assuming axial symmetry

but otherwise permits rather general conditions. The heat generation and thermal properties

of the media can vary with time and space in an arbitrary way.
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Consider an arbitrary geometry with the medium of interest composed of two

regions. One region (I, the active volume) is composed of a good M6ssbauer isotope that

absorbs the radiation preferentially in a nuclear transition with some radiation absorbed by
the atoms leading to production of heat in the sample. Another region (II) acts as a heat

sink for the active region because of its high thermal conductivity, low absorption in the

wavelength of the pumping radiation, and high specific heat. How effective can such a

heat sink be in preventing the temperature rise in the active volume from melting the
crystal? This question has been addressed systematically by Dr. David A. Sparrow who

calculated heat generated in the active region for a hypothetical isotope having the best

Mossbauer properties known (Fe57), together with an assumed isomeric storage level

within eV to keV of the M6ssbauer upper state. Such an isomer is not known to exist and

represents an extreme optimistic case. According to other calculations (Sparrow, Ref. 38),

which assumed an infinite conductivity of the sink medium (II), the heat generated would

still destroy the crystal. It was decided that more realistic cases should be treated to

examine the phenomena. In the present study, we performed calculations using real

thermal properties of the media and realistic space variations of the heat generation in the
media (I & H) to determine under what conditions a passive heat sink can protect the active

region from being destroyed during the pumping process.

B. CALCULATIONS/RESULTS

1. Specific Geometry

The calculations were performed for a cylinder of one material (Fe57) encased in a

sleeve of another material (Li). The geometry is shown in Fig. 10. In (a) the cylinder of

diameter DI is the active region and the sleeve of outer diameter D2 is the heat sink. In (b)

a cut containing the axis of the cylinder (shaded) is shown with the four test points at which

the temperature as a function of time is calculated are indicated. In (c) two assumed heat- 0

generation profiles which are functions of the radius x are shown.

2. Types of Calculations

A set of calculations were performed with an initial step function temperature profile

and no additional heat input. Generally, the temperature was assumed to be 100 K initially

in medium I and 0 0C in medium II. Both temperature profiles as a function of radial

direction, and temperature changes at the four points shown in Fig. 10(b) are graphed in
Figs. 11 and 12. 0
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Figure 10. System Definition. (a) Geometry used In the calculations,
(b) Position In the system of special points for which temperature

as a function of time is plotted In subsequent figures,
(c) Spatial distribution of heat sources.
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A set of calculations were performed with initial temperature 0 OC through the

medium and a heat input (due to radiation ionization) assumed in each medium.

Two different radial functions of the heat input were assumed as shown graphically in

Fig. IO(c):

(a) 1.03 x 109 Cal/cm3/s Region I

1.88 x 107 CaI/cm 3/s Region II

(b) 1.03 x 109 Cal/cm3/s Region I

1.29 x 107 Cal/cm3/s Region IL
X

3. Calculated Specific Results

Our first study dealt with the dynamics of the approach to equilibration. For the

system shown in Fig. 10 with DI = 0.2 t and D2 = 2.0 g and either all iron or iron and

lithium combination, Figs. 1 1(a,bc,d) show that the system (inside case), r < DI/2

temperature d s to about 10 percent of its initial temperature in just over I ns. Thus,

heat removal by passive diffusion effectively occurs on the time scale of 1 ns for this

combination of geometry and thermodynamic properties. Any attempts at active heat

removal, such as flowing coolants past the whisker combination or thermoelectric cooling

would have to do much better than this in order to be useful

When we introduce a distributed heat source into the problem there is an initial fast

rise in temperature followed by a steady state situation during the course of the heating

(pumping). The nonlinear region lasts for about I to 5 ns, depending on the exact

conditions. The approach to equilibrium is exhibited clearly in Fig. 12(k), where the

temperature difference in time at a particular point is plotted as a function of time.

Our results are summarized in Fig. 13, which compares the steady state part of the

heating curves for (a) an iron whisker DI = 0.1 g and no sink (D2 = 0) and two heating

curves calculated for an iron whisker with a lithium sink with a constant heat source in each

region (b) and a radial varying heat source in region II (c). The final temperatures after a

1 lis pulse are 513 *C for (a), 76.0 *C for (b), and 64.2 *C for (c).

All the calculations were done assuming a source beamwidth to linewidth ratio of
AE/I' = 104, which is a very optimistic assumption. Perhaps a more realistic assumption

would be AE/I = 106, which would increase the temperature rise by two orders of

magnitude.
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C. CONCLUSIONS

A heat conduction program written for cylindrical geometry (axial symmetry) and
capable of dealing with arbitrary material combinations and heat source locations was used
to examine the heating problem resulting from photon pumping of a y-ray laser.

Our calculations showed that for a system on the order of microns in diameter,
passive heat transfer from the active core to the reservoir occurred on the order of
nanoseconds. Any active technique for cooling the active core region of the y-ray laser
would have to be faster to be usefuL

It was also determined that after a few nanoseconds the system approached a steady
heat flow situation during constant heat input. Where comparisons could be made our
results compare well with the steady-state idealized geometry calculations of Sparrow (Ref.
37 and Chapter IV of this report).
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Figure 11. (a) Temperatures at points 1, 2, 3, 4 (positions of points shown in
Fig. 10) after an Initial condition of 100 °C in region I composed of Iron
(D1 = 0.2 I) and 0 °C In region II composed of lithium (D2 = 2.0 p). There
are no heat sources In I or II. The temperature profiles at several times for
this case are shown In (b) (when the thickness of region il Is doubled the
results do not change substantially).
(c) The same situation as in (a), except region il Is composed of Iron.
(d) Temperature profiles for (c).
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Figure 11, continued
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Figure 11, continued
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Figure 12. (a) Temperature changes at points 1, 2, 3, 4 assuming Initial T = 0 °C
In both regions and a heat Input of 1.03 x 109 Cal/cm3 /s In region I (iron),
and 1.88 x 107 Cal/cm3 /s In region II (lithium) are presented.
(b) Temperature profiles for selected times of case (a) are shown.
(c) Same as In (a) except the heat Input in region Il Is a function of radius,

1.29 x 10O3/Callcm 3 /

x (In cm)

(d) Temperature profiles for selected times of case (b).
(e) Same as (c) except the conductivity In region il Is Increased by a factor

of five (hypothetical material Indicated as LI') without changing the
other properties.

(f) Temperature profile for selected times of case (e).
(g) Same as (c) except the specific heat In region II increased by a factor

of five (hypothetical material Indicated as LI"*) without changes In the
other properties.

(h) Temperature profiles for selected times of case (g).
(I) Same as (c) except heat Input In region i Is Increased by an order of

magnitude because region II starts at x = 0.01 Instead of 0.1 and

1.29 x 10 /Cal/cm /s
x (In cm)

(J) Temperature profiles for case (h) at selected times.
(k) Change In temperature at points (1) as a function of time

[&t = T(t + At) - T(t)] for cases 12(a) and 12(b), showing the approach to
steady state.
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Figure 12, continued
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Figure 13. (Summary figure) Temperature change in central iron cylinder (pt. 1)
under different conditions, assuming the Initial temperature is T = 0 °C for
both regions and D1 = 0.2 p, D2 = 2.0 g. The solid curve shows the
temperature when the heat inputs are: 0

1.03 x 109 Cal/cm 3/s in region I, and
1.88 x 107 Cal/cm3 /s in region II

The dashed curve gives the temperatures when the heat input is a function
of radius in region II, I.e., 1.29 x 103/Cal/cm 3/s. The dotted curve gives
the temperature at point I when region II does not exist.
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VI. RESPONSE OF NUCLEI TO FIELD FLUCTUATIONS

A. INTRODUCTION

One of the early concepts introduced for developing a y-ray laser (Ref. 38) was

based on the idea of direct emission from isomeric nuclear levels. Such levels, because of

their long lifetime, permitted long pumping times and were considered to be good storage

levels. Unfortunately, because of the narrow natural linewidths associated with the long

lifetimes, and the relatively large environmental effects, causing inhomogeneous

broadening, resonance conditions for transitions involving such levels are difficult to

achieve. Several approaches to alleviate the problem have been put forth. One of the

approaches proposes to reduce the line broadening by external fields (Refs. 39 and 40). It

has been argued, however, that in order to narrow the inhomogeneously broadened line by

any technique, a time on the order of the lifetime of the nuclear state would have to be

expended (Ref. 27). The basis of the argument was the time energy uncertainty principle

(Refs. 41 and 42), AEAt > h, with the interpretation that AE = r, the natural linewidth of

the transition, and At --- the lifetime. It was stated that in order to remove inhomogeneous

broadening by any means the technique used would have to be applied for at least as long a
time as.

We have argued that this was not so (Ref. 1, Ch. 4) and that in fact the length of

time the line narrowing technique would have to be applied depended on the strength of the

interaction causing the inhomogeneous broadening. The appropriate condition, in fact, is

that the time for narrowing would have to be shorter than h/Hef (Ref. 43, p. 911) where

Heff is the average perturbation causing the broadening. The time energy uncertainty with
AE = r and AM = r (as interpreted by the author of Ref. 27) had nothing to do with the

phenomena in question. The time required to remove the field depends on the strength of

the field and not on the ultimate linewidth, because the effect of the external fields is to
cancel out the inhomogeneous field by shifting the resonance lines and does not affect the

inherent resolution of the nuclear energy system.

In this paper we calculate the time required to remove or set up a hyperfine pattern

which for different strengths at different lattice points in the sample produces
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inhomogeneous broadening. The calculation is based on the Blume theory of time-

dependent hyperfine interaction and was originally applied to relaxation phenomena •
(Ref. 43).

B. THEORETICAL BACKGROUND 9

The probability of emission of a photon with energy E = h0 and wave vector C by a 0
nucleus making a transition from state e to g is given by

-e0•) = <g I VI+) ie> I'

Pcg(k,co) = -2 2
(h o)+Eg - Ee) +(12)( •(35) 0

where V(+) is the interaction Hamiltonian between the nucleus and the electromagnetic field
for the emission of the photon, le> and Ig> are the excited and ground states for the

nucleus with unperturbed energies Ee and Eg, respectively, as shown in Fig. 14(a) and r is

the total linewidth at half maximum. For the rest of this paper we assume units with h = 1. 0

The Hamiltonian for the matter system including all the nuclear, atomic, and solid-

state terms is given by H, so that

H Ie>=E'Ie>

H 6> = ES Ig> 
0

To obtain the experimentally observed lineshape I(w) we have to average over all the

possible initial states 6> and sum over all the final states 6>. In order to take into account

the dynamic phenomena due to time-dependent Hamiltonians, we transform to the time 0
domain to get

I(w) = f dt' f dt" etWte)" -lrat' + t) < V(-) (t") V(+)(t') > (36) 0
0 0

where

V*(t) = exp i f H(t') dt' V) exp [-i H(t') dt' . (37)

9 This discussio follows the analysis of M. Blume presented in Ref. 43.
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Figure 14(a). Energy levels of an Fe 5 7 nucleus without a magnetic field present
(left) and with a magnetic field present, causing a Zeeman splitting in

the levels (right); (b) Absorption spectra of Fe 57 corresponding
to the level splitting shown in (a).
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In case the Hamiltonian is not explicitly time-dependent, eq. (37) reduces to

V'(t) = ei 1 t V(+) e-H't , (38) G

and if in the experiment only photons emitted between times r and r + Ax are recorded, the

two integrals in the lineshape eq. (36) should be taken between -r and r + Ar instead of 0

and -.

In the case of a standard M6ssbauer experiment with the nuclei unpolarized and

when no measurement of the initial state is made

< V() (t") V+ (V) > --- < V() V WV - t") >,

and eq. (36) can be written as

2 Jdre -L V(.-)V+

W(O) =2 Re d e 2 <V V (r) > (39)
0

Let us consider a nucleus in a time-dependent magnetic field H(t) = h f(t), where h
is the maximum value of the magnetic field and f(t) a function of time that varies between 0

and 1. The Hamiltonian is given by

H(t) = Ho + gl±z h f(t) , (40)

with g the gyromagnetic ratio, gt the magnetic moment of the nucleus, and Iz the spin
component in the z direction which is also the field direction. Ho is the unperturbed nuclear
Hamiltonian so that, Ho Ilml> = El hlml> and Ho liono> -= Eo "omo> with 11, ml and

lomno representing the excited state spin and z-component (magnetic quantum number) of
the nuclear excited and ground states, respectively.

Consider the special case of Fe57 with 11 = 3/2 and Io = 1/2. The energy levels are

shown in Fig. 14(a) for the zero field case on the left and for the nucleus in a finite field H

on the right. Figure 14(b) shows the corresponding M~ssbauer spectra taken in the
scattering geometry (total scattering cross section measured).

Suppose the magnetic field varies with time. Blume has shown that in this case the
correlation function can be represented as
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< V() V(+)(t)> -E 2I>+ 1 , <I=m o V( +)'ji m i >- 2

0 -E)

iXW% -g~nh) Phi f(eOdr

Xe , (41)

with the matrix elements of V ()proportional to the Clebsh-Gordon coefficients.

C. RESULTS

Let us consider, for simplicity, only the outer lines of the split spectrum and the
transition (Inml) = (3/2, 3/2) to (Iomo) = (1/2, 1/2) as shown by the solid vertical line in

Fig. 15.

Equation (41) then reduces to
t

-i48 f(tC)de
<V() V(+ (t > (t) e Q(3/2, 1/2, I/2, 1/2)e ,o(42)

with

8 = (glm, - gMO) jh and ca 0 = E 1 - E-.

and Q is the time independent transition matrix element.

If we further assume that the field varies exponentially with t with time constant y
and shift the energy reference by wjo, then

A~t) = e-t,

f e- "dt'_- (I e't)

and the part of the spectrum representing the (Itim) = (3/2, 3/2) -ý (L0mo) - (1/2, 1/2)

transition, leaving out the factor Q, is given by

I(Co),- Re fd& exp[-ican-(IT/2)T 4- (I- - e" ] (43)
0

This can be integrated numerically to obtain the lineshape for arbitrary values of the
parameters. For two limiting cases the solutions can be expressed in closed form.
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Figure 15. Absorption cross section of Fe 57 showing only the outer lines,
as Indicated in Fig. 14(b) when r = 1.0 and 8 = 1.0 and y = 0.1 In (a)

and y 1062 in(b) andya=5x 102 in(c)
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Case (a) when r - 8 and y >> r we get

I(Co) = Re +- Y i(+

ý2 -iOD) +(y iO 3) (.2 +y-iCD)-

I(CO) = 8(Y+ n) 2

2 ( +[2 r + )( +7 + w2

+ 82[3w2 (½ F+Y)A•]

r o)[ 0 +,yj + 2[(,r +2y2j+ C02]

Case (b) when r >> y and r - 8 we get

I(ow)---2~ RefJ e•r'+rT -.. (r-• r2

I(w) - Re (2 245)

(o+58)2 +-- ' m-O m!2zm

where
S(1-i) (+8)

The first term in the series is 1 so that in the limit r >> y the line shape approaches a

Loretuzian centered at Ao• and with a full width at half maximum of F.

Figure 15(a) shows a split spectrum for values of y < F, and 5 = F (y = 10-1,
F = 1,5 - 1). Figure 15(o) shows a collapsed spectru for y= r =5 and Fig. 15(c)
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shows an enhanced collapse with a narrower line spectrum for y = 5r and 8 = r.
Figure 16(a) shows a completely split spectrum with y/J = 10-4 and 8/r = 10, while

Fig. 16(b) shows a completely narrowed single line with 'y,/ = io3 and &r = 100.
1.0

8.6

0.4-

I

0.2

0.0
-I.o -10.0 6.0 10.0 29.0

ENERY IN UNITS OF THE NATURAL INE WIDTH
3-9-89-12
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1.0 0
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(b)

Figure 16. Absorption cross section of Fe57 showing only the outer lines as
Indicated In Fig. 15(b) for the case when y = 102, r = 1.0, 8 = 10 in (a),

and y 10, r =1,8 = 100 In (b). 0
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These results show that the ituclear resonant lineshape will show a full split
spectrum as in Fig. 16(a) if the change of field is slow (y«<< r) compared to the decay time

of the nucleus. In this situation most nuclei will be exposed to the field during their lifetime
and while they decay. If the field decay is fast (y >> r) the spectrum

will show a collapsed lineshape similar to the one shown in Fig. 14(b) on the left. This

implies that it does not require time on the order of a lifetime of the nuclear state to

effectively remove the inhomogeneous broadening.

D. CONCLUSIONS

Special cases for low and high relaxation y << F and y >> F, respectively, with

Fr - 8, indicate that the natural lifetime of the nuclear state F sets the lower limit on the

width of the spectra obtained for these cases but does not for fast relaxation prevent a good

definition of the spectim. Thus in a very short time during which the hyperfine interaction
changes value the nuclear resonance spectrum follows this change quickly. In a time much

less than the natural lifetime the spectrum changes from being representative of one

hyperfine interaction to being representative of another. The nuclear system quickly
responds to the change of fields in its environment. Thus, if inhomogeneous broadening is

represented by a sum of spectra representative of different fields at different nuclear sites, if
these fields can be changed in a time At much shorter than the natural lifetime, the resulting

spectra taken over a lifetime of the nuclear state will represent the final hyperfine interaction

spectrum.

This result is important to the y-ray laser feasibility study because it shows that

inhomogeneous broadening can be reduced quickly by applying sufficienuy strong and
appropriate external fields. Inhomogeneous broadening of several orders of magnitude

higher than the natural lifetime of the isomer can be removed by fields in a time shorter than

the natural lifetime of the isomer. Such a fast mechanism could be used to trigger the lasing

or superfluorescent emission by providing a strong resonance overlap of narrow resonance
lines quickly.
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APPENDIX A
DERIVATION OF THE HAAKE-REIBOLD EQUATIONS

The purpose of this appendix is to justify the system of eqs. (1-3) in Chapter I for

the excited population number operators Ni, the polarization operators Rijf, and the electric

field operators Eijj. These equations are given in Ref. A-I without derivation.

Reference A-2 derives similar equations for a two-level atomic system, but does not

indicate how to generalize the theory to multi-level systems. This appendix will attempt to

fill in the steps needed to extend the derivation of Ref. A-2 to the present case of interest.

For this purpose it will be necessary to use generalized commutation relations given

by Ref. A-3 for operators Skj* that effect a transition from state j to state k in a multi-level

system. The commutation relations are

I S k, Stun] Sjn,8km- Sm&'n (A-1)

Reference A-3 neither derives nor gives a reference for (A-l), which does, in fact,

reduce to the familiar two-level commutation relations (cf., Ref. A-4, which derives them)

for the polarization R± and inversion R3. The identification between the operators labeled

S in (A-i) and the operators labeled R in (A-2) required for this reduction is

S10 = R , S 0 1 = R-, Si - S00 = R3 . (A-3)

To avoid confusion with the electric field the letet S is used heme to designate the transition operators
instead of E, which Ref. A-3 uses for that prpose.
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The identification eq. (A-3) for the two-level case suggests the appropriate
corresponding identification for the operators pertinent to the multi-level case leading to the
eqs. (1-3) in Chapter I. Thus, generalizing eq. (A-3), it will be assumed that

Sii =Ni,i=0,1,2,3

S =Rj ,Sj=fR_,i=2,3, j=1,2, i>j (A-4)

Following Ref. A-2, the Hamiltonian for the non-interacting atoms is given by a •
sum, over all atoms in the system, of terms

HA =h [o031(N3-N1 3+ 0o32(N3-N2 3+ co21(N2-N1 3+ 0)4,3N 4-N3 )+ o.) O(NI-N 0 )]. (A-5)0

The interaction Hamiltonian is given by a sum, over all atoms in the system, of terms

HF3 R R31 )+.g2E31 (R3 -R32 ) + A6

The Heisenberg equation of motion for any operator 0 of interest in terms of the 0
Hamiltonian H will have the form

dO/dt = (i[) [H, 0] (A-7)

However, the eqs. (1-3) of Chapter I cannot be derived entirely from a relation of the form
eq. (A-7); the loss and source terms are ad hoc additions to equations that are obtainable
from a Hamiltonian. 0

The Hamiltonian to be used to obtain the Heisenberg equations before the addition
of the ad hoc terms consists of the standard free photon field contribution plus the sum over

all atoms of the single atom expressions given by eq. (A-5) and eq. (A-6). On substituting
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the Ni and the Rij+ into the resulting equation of the form eq. (A-7) and then using

eqs. (A-i, A-3, A-4), the following equations are obtained:

dN1/dt = g1E31 R3 1 + 1;2 ,

dN2/dt = g2E32 ( 3 I+R 2),

dN 3/dt = -g 1 E 3 1 (R;I + R31~)+ g2E32 (e32 + R; 2)]

dRý2/dt = i 1(31 -T 032 12022+ - O0io) R21 + g1 E31R3 2 + 2 E 32R3 1 ,

dry1/dt=i(1032 E 2cg31T oE21)E1 +gI (N3- N') E31 -2E32R21'

dRPjdt= i (I w3l I 2c032 (021)R3 2 + 92 (N3 - N2)E 32 gjE31R 21  (A-8)

Equations (A-8) are at the stage of corresponding equations for the two-level atomic

system in Ref. A-2 which Ref. A-2 then modifies by separating the electric field and

polarization operators into their positive and negative frequency parts, neglecting rapidly
oscillating terms in the process. Applying the same process to (A-8) results in the
eqs. (1-2) of Chapter I minus the source and loss terms. Equation (la) is not included
because the right hand side consists only of a source and a loss term.

Equations (3a, 3b) in Chapter I can be derived from Maxwell's equations with a
polarization source exactly as in Ref. A-2 by assuming that the radiation due to a particular
transition depends only on the polarization associated with that transition. The results

appear to differ somewhat in form from the corresponding results given in Ref. A-2.
However, it can be seen by inspection that the differences are due to the use of a retarded

time coordinate and neglect of spectral broadening in Chapter I as in Ref. 1.

Actually, two discrepancies between the equations derived in the manner

summarized in this appendix and eqs. (1-3) will exist as eq. (A-8) now stands. These are

the presence of the coupling constant gi in all six equations and the presence of a term
involving the w in each of the last three equations. The first discrepancy can be accounted

for as due to a normalization of the electric field and the second as due to irrelevant phase

factors in the polarization operators.
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COMPUTER CODE FOR

TRIPLE INTEGRAL CALCULATION

B1. BACKGROUND

In this appendix we describe the algorithm used to compute the superfluorsecent

pulse from the closed form (triple integral) expression derived in Chapter I. The physics of

the problem is modeled by the set of differential equations with stochastic source terms

given in chapter I, section 2.

The algorithm makes use of the following expressions derived in chapter 1:

Equation (1):

-g-) e-n~ [2j-Eý-?T x' eAx' + (I-.Y) e dx dt'

Equation (2):

t'k(t~t') = 2 f N3(t") dt" + No e e No (t - t

Equation (2):

k(t,t) = ko(t) - ko(t')

i.e., (t) = 2yN" N - + t

r -JNI,

and ko(t) = 2j N3(t") dt" - No + t

0
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Equation (3):
t

yN ro (e-yt -e -n1- e r(t -e) -" (t') dt'3 I F -70
0

=NA - NB

g

Equation (4) - (Linear approximation):

=3 YNOi (e-yt -e-rtJ

Equation (5) - (Linear approximation):
Z•t,t) = yN0 y i + o e' e•'

)= - ,:--ert] + No (El e - No (t - t')

B 2. STEP BY STEP DESCRIPTION OF ALGORITHM 0

Fig. B 1 shows the step by step iteration process used in the algorithm. Initially the

linear approximation, function 1(t), is used to calculate two starting pointsby iteration; then

from these a two point, linear, extrapolation procedure is set up and used to project an

initial point for the next set of iterations. The steps are indicated and numbered on the left, •

while the equations from which the equations in the codes are derviced are indicated on the

right in paranthesis.

Step I Calculate T(t) on the range t = 0 to t = tn from (1) and (5)

e(t) ffi - r •• x' e"gx'+ ('-1' dx'dt' (1)NU

2,tNt') =S -eC• e' - e-(
f F (5)
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+ No ~. ~~ No (t - t')

Step 2 Use I(t) to calculate Ii(t) and 11(t1) from equations (2), (3) and (1) (with I(t)

substituted for I(t)):

NyN0 (e -Yt e-t)-3 - e-r (t -e) ?(t') dt' (3)
3O) = r - Y

where I +g

t0
k (tft)= 2 j N3 (tC) cito + No e e NO (t - V') (2)

t I
,S

I, (to)=- Jt[Ck(t1~ý Ax r-7 x

Step 3 Use points Ii(to) and 11(tl) to calculate slope Sol of line 101, and then use Sol
and At = tr-t, to calculate 12 (t2) which is initial estimate for I(t2).

Step 4 Use eqs (1), (2) and (3) to calculate first iteration estimate for I(t 2) in the

following way: use l't 2) for I(t) in eq. 3 and then the resulting N3 in eq. 2 to

get first iteration result for I(t).

Second iteration - use I(t) in step 3 and 4 to calculate the new I(t). Then, with

these two point replacing II(to) and II(tl), repeat step 2 and continue this

process until convergence is satisfactory.

B-6



1.6

1.4•

1.2

S1.0

z
I0.8 t o

S0.6

0.4

02

0.0

0.000 1.238 2.478 3.713 4.950 6.188 7.425 8.663 9.900

TIME

2-1-90-5

Figure 82. Sample output for N = 103 and y =50,1" = 10-3 and At= T = t+1 - t=

0.1, showing the linear solution f(t) and the final result 1(t). Time Is In units of

ISF.
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0.008

0.000

0.0 20.0 40.0 60.0 80.0

TIME

2-140-3

Figure 83. Another sample run with N a 1010 showing the final result after an
average of three Iterations per time point. 5
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DESCRIPTION/DATA AND VARIABLE NAMES

Following is a description of the data written to the various unit numbers in the
FORTRAN program. In the command procedure these unit numbers are assigned to

ASCII files which can be edited or printed.

UDesrption of the Data
12 T, iteration #1 to 3; N3, result of eq. 1 w/o the de' integral;

, result of eq. 1

14 1st 30 entries in the k(t,t') array

15 T; eq. I before integral; integral in eq. 1, eq. 1, counter

17 T, eq. 1 before double integral, NA; NB; N3 , result of eq. 1 w/o the
dt integral, slope between this poin t and previous point, slope value

Text o trCd

g G

Y GAMSML (input)

N N (input)

r GAMLRG (input)

MU (input)

No NO (input)

2* rk(,t')x' Besl

F-'y GLMGS

y- F GSMGL

LBAR
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-•- •GSTGSDN
N

dx increment DELTAX (input)

TCHANGE

t

location in J T
0

t

minimum t in J(usually 0) TMIN
0

the tin J TMAX
0

00
icent in IC

The subroutine name and equation number in the text are correlated in the following way: S
Subroutine Eq. 1 is equation number 1.

0
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PROGRAM BESAPRJ2
C Wrine by Karen K. Garcia
C April 21, 1989
C This program uses a Bessel function
C from the IMSL routines

PARAMETER (NSlZE=1l000,KSIZE= 1000)
DIMENSION IPKI(300)
REAL X(NSIZE), EQ16ARR(NSIZE), NO, MU, G, LBAR,

*N, N3. KTP(KSIZEKSIE), NA, NB, NAPARTI
COMMON /BLOCKI/ NO, MU, GAMLRG. GAMSML, KTTP
COMMON /BLOCK2/ YIwr, G. N3, Y(NSIZE). Y2(NSIZE), NA, NB0
COMMON IBLOCK3/ NAPARTI, ETA. SLOPEVAL(NSIZE), TCHANGE
COMMON /BLOCK4/ EQ2OTI
G0= 1.0
WRITE(6,Y)Mnter min, max and incr of time'
READ(5,*)TMIN.TMAXTINCR~trna-x2
WRrME6,*) 1st TMAX= ',TMAX
WRITE(6,")' 1st TMAX2= ',TMAX2

C
WRXTE(6,*YEnter delta x value!
READ(5,*)DELTAX

C
C Read in the values for the input data

WRrTE6,*)Fype value for No'
READ(5.,)NO
WRITE(6,yrType the value for MU'
READ(5,*)MU
WRITE(6,*)'Type the value for large gamma'
READ(5,*)GAMLRG
WRITE(6,*)Type the value for N
READ(5.*)N

C
C Check the initial value for lbar

lbar = 0.1
ICNT = 1

C
WRrTE6,")'Type the value for small gamma!
READ(5.*)GAMSML
WRITE(6,YType value for the start of the slope'
READ(5.YrTCHANGE

C
GLMGS - GAMLRG - GAMSML
GSMGL = GAMSML - GAMOLRG
GSTGSDN =(G**2 * GAMSML) / N0
NAPARTI= (GAMSML * NO) / (GAMLRG - GAMSML)
BTA - (1.0/G) + (2.0 * 0.5*MU * LEAR)
EQ20TI = (2.0 * GAMSML * NO) / GLMGS

C
C

YMIN = 9.0e20
YMAX = -9.0E20
1=1
NWALL= 1
OPEN(UNIT= I5,DISPOSE=XIEEIYSTATUS- NEVI)
WRITE( 15, 15)

15 FORMAT(2x,T,.4X,'EI6 TERM 1',2X,
-'JN7EG-,2X.`EQl6&20',3X,'¶CNT`)

C Checkto weeiftmnin = Uax
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IF(rMAX-TMIN.LT.TINcR)GOTO 25
ITER = 0
T = TMIN
DO WHELE(TILE.Th1AX)

CALL EQI(TSUMTICRNCALLT,1TE.
* ICNTGLMGSPELTAX)

C
C Save the X values

X(I) =T
C
C Compute the equation labelled 16

EQ16Tl = GSTGSDN * EXP(-GAhMRG T)
EQ16ARRQl) = EQI6TI1
Y(I) = EQ16TI * TSUM
YMIN = MINI(MINY(I))
YMAX = MAX 1(YMAXY(J))

WTr(15,20)X(I),EQ16T1,TSUMY(I),I
20 PORMAT(lXF6.2,2XEE8Z3XE10A.43X.IO.4,3XI4)

1=1+1

C Check against dhe array size
IF(L.GT.NSIE)THEN
WRJTE(6,*)INCREASE. ARRAY DIMENSION. (NSIZEY
CALL EXIT
ENDIEF
T = T + TINCR

END DO
25 CONTINUE

CLOSE(UNrT=15,DlSPOSE="KCEEP')
OPEN(UN1=14,DISPOSE=i(EEI',STATUS='N4EW')

C write out the KTIP array
write(14,")'columns I - 10'
write(14Z27)

27 format(lx,10xV,10',lx'.1',lx.,120x,'3',l0x,'et.')
DOUH= 1,30

WRrTE14,26)ii,(KTIP(IIU)JJ=I,I0)
END DO
write(14,O)''
write(14,)'columns 11 -20'
wrute(14,*)"

DO 11= 1,30
WRrME14AN)i,(KTrPflJJ),JJ=1 1,20)

END DO

write(14,*)'columns 21 - 30'
write(14,)"'

DO II=-1.30
WRJTE(l4,26)i,(KTTrPM,JJ),.Ji=21,30)

END DO
CLOSE(UNrr=14,DISPOSE='KEEF)

26 FORMAT(i4,10(1XE1O.4))

C END OF FIRST EQUATIONS SET, START OF SECOND EQUATIONS SET

C
I-I-i
LASTI - I
NWALL a2
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C
C Write the headers for the second equation set

OPENWUWrr-2DIlSPOSE=IcEEF'STATUS='7NEW')
OPEN(ULr=17,DISPOSE=X'EEP,STATUS='NEW')
WRITE(12,30)

30 FORMAT(5X,TI,5X,7'J8X,N3',15X.'JHAT(1Y,
* 12X,IPRIME(ty)
WRITE(17, 199)

199 FORMAT(4X,-r,2X,¶EQ1 TERM 1AX,'NA',7X,¶NB',
* 7X,7N3,.6X,'hat(t)',4X.,Slope value',4X.

7 1(t) Nth',5X.'SLOPE')
C Compute the second set of equations

ICNT = 0
C
C 6/6/8 KKG Copy the That array to the new I array
C This will be used for the iterations

DO WRIL = 1,LASTI
Y2(IFIL) = Y(IFILL)0

END DO
C

DO J = 1, LAST!
C Restore the x value from the above computation

T =X(J)
C
C Iterate over the re-substibition of the I(t) term.

DO K= 1,3
C
C Equation 1 parameters
C TSUM - output
C TINCR, NCALL, T - input

CALL EQ1(TSUMTINCRNCALL..T.K,
* ~ICNT~GLMGSDELTAX)

C
YINPT = EQI6ARROj) * TSUM
Y2Q) = YIwr
WRITE(12,35)TK.N3,YQ),YINPT

35 FORMAT(lX~f6.2,IX,14,3(1XE20.l 3))
END) DO
IFOj.GT.1)THEN

C
C Compute the slope

SLOP = (Y2(Xj) - Y2(j- 1))
*~ I(Xj) -X64))

WRITE12,)'SLOPE BETWEEN ',J1,
* ~AND 'j,' IS ',SLOP

white(12,*Ythe values are y2(jj-1),x~jj-IY',y2(j),
* ~y2(j-l),xOj),x(j-1)

ENDIEF
IF(T.GE.TCHANGE)THEN

SLOPEVAL(J+1) = Y2(J) + (SLOP * TINCR)
Y2(J+l) = Y2(J) + (SLOP *TINCR)

ENDIEF
C write data to unit 17

IF(J.EQ.l)THEN
WRfE(l7.200)T~EQ16ARRQJ),NANBN3,yoj),

* SLOPE VA14J+l),Y2QJ)

B-14



ELSE
WRrM(17,00)TXQ16ARR(J),NA,NBN3,YOj),

EN I SLOPS VAL(J+ l).Y2QJ),SLOP

200 FORMAT(lX~F6.2,5(2X.E8.2)A(3X.E 10.4))
END DO
CLOSEQJNrr-12,DISPOSE='K.EEP`)
CLOSE(UNIT=17,DISPOSE='KEEP)

CKG END DO
0 END

C ALL SUBROUTINES BELOW HERE

C EQUATION 1

* C
SUBROUTINE EQl(TSUMTINCR~NCALLTJTER,
* ICNT.GLMGSPELTAX)

C
C Equition 1 pararmeters
C TSUM - output
C TINCR, NCALL, T - input
C

PARAMETER (NSIZE=1000,KSIZE=-1000)
REAL NO, MU, N, N3. KTrP(KSKIZE)SINANBGNAPARTl,
* TEMPEQ1672, EQ1672
DOUBLE PRECISION EQ16T3, EQ16T3N2, DEQ2O, DXPRIME
COMMON /BLOCKI/ NO, MU, GAMLRG, GAMSML, K71?

0 COMMON /BLOCK2I YINPT, G. N3, Y(NSIZE), Y2(NSIZE),
NAINB

COMMON /BLOCK3/ NAPARTI, BTA, SLOPEVAL(NSIZE), TCHANGE
COMMON IBLOCK4/ EQ2OTI

C
C VARIABLE DEFINITION
C NCALL - Number of the equation aed that
C this subroutine is called for.
C ie. I -for fun cumv
C 2 -for second curve
C

7TSUM - 0.0
TSUM m 0.0
TNEWSUM = 0.0

C Check
IFCI.LT.Tincr)GOTO 20
TPRIME = 0.0
TLAST = T - TINCR
jofig = 0
DO WHILE(TPRIME.IE.TIAST)

C
IF(NCALL.EQ.I)TlHEN

IBSLFLG = 0
CALL EQ5(EQ20,11PRIMET,TINCRGLmGS,tpp)
EF(EQ2OLTA0.)THEN
WRITE(6,*J0 USED 1st eq. EQ20= ',EQ20:' tprue= gwpime

IBSLFLO m 1
ENDIEF
ELSE IF (NCALL.EQ.2)TH-EN
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EBSLFLG= 0
CALL EQ2(MCREQ20,PRIME.TJITERJBSLFLG)
END IF

C PDA 0.0
TSM=0.0

IXK2NT I
XLAST =1.0 - XPR]3ME
EQ1673P2 = (GLM[GS *TPRIME)
DO WHILE(XPRIME.LE. 1.0)

C0
C Compute the equation labelled 16 integration portion
C

XFPT = XPRIME + DELTAX
IF(IBSLFLG.EQ.0)THEN

DEQ20 = EQ20
DXPRIME = XPRIME

EQ16T2 = DBS1O(2.ODO * DSQRT(DEQ2O * DXPRIME))0
ELSE IF(IBSLFLGEQ.1)THEN

1F(J0FLG.EQ.0)THEN
WRrTE6,*)'JO BESSEL FUNCTION USED'
WRITE6,*)'XPRIME,TPRIMEXPRIME,TPREIME
JOFLG = 1

ENDIEF
C 7/3/9 Put Irv Kay's JO bessel function in here

BESL = (2.0 * SQRT(EQ2O * )aVllE))
C
C POWER SERIES

IF(BESLLT.10.0)THEN
DO NBES - 1,18
FITOP = (-((BESL/2.0)**2)**NBES)

C Compute N factorial
rFACT = 1.0
DO L =NBES,1,-I

rFACT = rFACT * floa(L.)
END DO
FIBOT =rFACT ** 2
EQI6r2 = (FITOP / FlBOTI) + 1.0

END DO
C
C ASYMPTOTIC

ELSE iF (BESLGEAO0.0)THEN
P1 = 3.141592654
F7TRM[I = SQRT(2.O / (PI * BESL))
F2TRM[2 = COS(BESL - (PI / 4.0))
EQ1612 - F2TRM1l F2TRM[2

END IF
ENDIEF

EQI6'12 = EQ16T2 ** 2
EQ16T3N2 = 0.ODO
EQ16T3 = 0.ODO
EQ16T3PI - -2.0 * 0.5fdU * XPRIME
EQ16T73 = EXP(EQ16T3P1 + EQ16T3P2)
EQI163N2 - EXP(EQI6T3P1 + GLM[GS *TPPT)

EQ1613 = (EQI6'r3 + EQl6r3N2) / 2.ODO
IF(EQ1613LT.1.OE-I0)THEN

EQ1613 = 1.OE-10
END IF
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EQ16 =EQ1672 *EQ1673+PEVX2.

PRESIM = TXSUM+

PREVTX = EQ16 * DELTAX
END IF
XPRIME = XPRDME + DELTAX

END DO
IBSLFLG -0

IFjIcnLEQ.1)THEN
TrSUM = TXSUM * TINCR
PREV1-r = MrUM
ICNT = ICNT + 1

M'rUM = 0.0
ELSE

TTSUM = MUM + ((TXSUM*TINCR) + PREVTI)t2.0
PREVIT = TXSUM * TINCR

ENDIF
TPRDAE = TPRIME + TINCR
END DO
T'SUM = TISUM

20 CONTINUE
C

RETURN
END

C

C EQUATION 2

SUBROUT~INE EQ2(TCREQ20,TPRMETXMTRBSLFLG)
PARAMET'ER (NSIEM=1000,KSIZE=-1000)
REAL NO, MU, N, N3, N3SUMSAV, N3StJMPREV, N3SUMCUM,

* KTTP(KSlZEKSIME, KOT. KUMR NA. NBKO1T,
* KO'ITMr, NAPARTI
COMMON /BLOCK1I NO, MU, GAMLRG. GAMSML, kttp
COMMON /BLO)CK2 YINPT, G, N3, Y(NSLZE), Y2(NSIZE),

* NAINB
COMMON /BLOCK3/ NAPARTI, BTA. SLOPE VAL(NSEZE). TCHANGE

C Compute equation 2
XN3 = 0.0
xn3sum = 0.0
IF(T.LT.TINCR)GOTO 20
TVAL =0.0

K0TI2 EXP(-OAMSML * 1),AMSML
DO WITILE(TVAL.LE.T)

EF((TVAL-TINC~R).LT.TlNC~R)THEN
N3 = 0.0
XN3 = 0.0

ELSE
TDPRIME = TVAL - TINCR
CALL EQ3(TlNCRTDPRlMEjWER)

XN3 -N3
ENDIEF
TDPR]ME a TVAL
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CALL EQ3(MICRTDPRIEMETR)
XN3 = (XN3 + N3) /2.0 * TINCR
xn3sum = xn3sum + xn3
TVAL = TYAL + TINCR
END DO

20 CONTINUE
xn3 = xn3sum
KOT=2.0 *XN3 -NO *(K0T2+ 1)

C
XN3 =0.0

xn3sum =0.00
IF(TPREME.LT.TINCR)GOTO 25
TVAL = 0.0
KOTIM1 = EXP(-GAMSML * Tprime)/GAMSML
DO WHUE(TVAL.LE.PRIME)

IF((rVAL.TINCR).LT.TINCR)THEN
N3 = 0.0
XN3 = 0.0

ELSE
TDPRIME = TVAL - TINCR
CALL EQ3(MICRTDPRIME1TRM)
XN3 =N3

END IF
TDPRIME = IVAL
CALL EQ3(1'INCRTDPRIMEITER)
XN3 = (XN3 + N3) t2.0 * IC
xn3sum = xn3sum + xn3
TVAL = TYAL + TINCR

END DO
25 CONTINUE

xn3 = xn3sum
KOTPR = 2.0 * XN3 - NO * (KOTWP2 + Tprime)
EQ20 = ICOT - KOTPR

C 5/30/89 KKG Add code to set flag to use JO bessel
c function if eq20 less dm 0.0

IF(EQ2OLT.0.0)THEN
EBSLFLG = 1
EQ20 = ABS(EQ2O)

ENDIEF
RETURN
END

C

C EQUATION 3

SUBROUTIE EQ3(TICRTDPRIMEJT`ER)
PARAMETER(NSIZE= 1000,KSIZE= 1000)
REAL NO, MU, N, NESUM, N3, NA, NB,

* NAPARTI, KTrP(KSIZEKSEZE), NAPART2, 1OFT,
* W3SUMCUTM, NBSUMSAV, NBSUMPRBV, NB1I, NB2
COMMON /BLOCKI/ NO, MU, GAMLRG. GAMSML, kttp
COMMON /BLOCK2/ YINPT, G, N3, Y(NSIZE), Y2(NSIZE),

* NA, NB
COMMON /BLOCK3/ NAPARTI, ETA, SLOPE VAL(NSrZE), TCHANGE
NA = 0.0
NB = 0.0

C Compute equation 3
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NAPAR17 EXP(-GAMSML * TDPRIME)-EXP(-GAMLRG *TDPRIME)

NA = NAPARTI * NAPART2
NBSUM = 0.0
IF(T DPRIME.LT.TINCR)GOTO 20
ICNT= I

DO H.(VLE.DRME
NBI = EXP(GAWvIRG * (TDPRIME - TvaI)) *Y2(ICN1)

nbsum = nbsum + (nbl*ticr)
ICNT =ICNT + 1
TVAL =TVAL + TINCR

END DO
NB = ETA * NBSUM

20 CONTINUE
N3=NA-NB

RETURN
END

C EQUATION 5

C
SUBROUTINE EQ5(EQ2O,TPRIMETTINCRGLMGS,tppt)

PARAMETER (KSIZE= 1000)
REAL NO, MU, GAMLRG, GAMSML, N, kup(KSZE.KSIZE)
COMMON /BLOCKl/ NO, MU, GAMLRG, GAMSML. kutp
COMMON !BLOCK4I EQ2OTI

C
C Compute the equation labelled 20or equation 5
C

TPPT = TPRIME + TINCR
EQ20T2 = EXP(-GAM[SML * TPRIM[E)
EQ20TMP = EXP(-OAM[SML * )
EQ2017 = (EQ20T7 - EQ20TMP) / GAMSML
EQ2OT2N2 = (EXP(-OAM[SML *TPPT) -

* EQ2OT2P) / GAMSML
EQ2OT3 = 0TPR1ME - T')
EQ20T3N2 = crPTr - 7)
EQ2OT4 = NO *EQ=EI
EQ2OT4N2 = NO * EQ2OT2N2
EQ2O1T5 = NO * (T~ - ThPfldE)
EQ2OT5N2 = NO * (Ti - TPPT)
EQ20p = EQ2Of I (EQ2OT2 + EQ2OT3) + EQ2OT4 - EQ2OT5
EQ2OJN2 = EQ2ff I * (EQ20T2N2 + EQ20Y73N2) +
* EQ2OTr4N2 - EQ2OT5N2
EQ20 = (EQ2Op + EQ2ON2) / 2.0
IF(((Qnt(t*(1.0/zincr))).GT.KSIZE).OR.

*(int(q~rime*(lI.Ozincr)).gLksize))THREN

WVrr(6,*)INCREASE SIZE OF KSIZF, VARIABLE'
CALL EXrT

ENDIEF
kttp(inz(t*(I.OAincr)),int(zdrime*(I.Qin))) = q2O

RET7URN
END
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APPENDIX C

A STUDY OF THE DIFFERENCE IN PULSE LINESHAPE

FROM SF AND ASE

Amplified spontaneous emission (ASE) and superfluorescence (SF) can be

distinguished theoretically (Ref. C-1) and experimentally (Ref. C-2). In this section we

discuss the differences between ASE and SF pulse shapes calculated in the semiclassical

approximation. From the work of Trammell and Hannon (Ref. C-3) we obtain the pulse

intensity for an initially Lorenzian pulse after passage through an amplifying medium of

length 1.

with

20 .22 fgAn* (t)
Ko =(a+l)(a+l)

where

I is the wavelength on resonance

f is the recoilless fraction

g is the coupling constant (= 1 for present)

An* is the inversion density at t = 0

a is the internal conversion coefficient

a is the inhomogeneous broadening parameter.

From the work of Bonifacio and Lugiato (Ref. C-4) we obtain the pulse intensity

for an SF emission which is given by

=1 N' e ~sech 2[-L(t V]l

where
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rD = 1/2R 1nN

N is the total number of cooperative nuclei

N' fN
(1 + a) (1+ a)

S= k (g2  p) _ 8n o (pX 2I)

T(o is the natural lifetime

p = N/V is the density of radiators in the cooperation volume.

In making the comparison between Is(t) and Ip(t) we assume the nominal values of:

o = ls,

p = 1022 cm- 3

= lo"8 cm

1 =1cm

f = 10-1

a = 10

a =0

V = 3x10-4cm3

T2* --oo

Figure C-1 shows the variations of the ASE pulse Ip(t) as a function of the

inversion An* for values of An* from 1022 cm- 3 to 1017 cm- 3 and gt = 0. Figure C-2

shows the variation in the pulse for gt = 0, 1, 10, 102 and An* = 1022. Figure C-3 shows

the SF pulses ISF(t) as a function of N = nV and Fig. C-4 shows the SF pulses as a

function of gi. To perform this calculation both 'R and ED were modified by the factor fit 0
as described in the text to take into account the reduction in the effective cooperative volume
for large values of i.-
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a 10- 3  100
TIME (s)

Figure C-1. The ASE pulse as a function of time for different Initial Inversion

densities In cm-3 , (a) = 1022, (b) m 1021, (C) 5 x 1020, (d) 1020, (e) 5 x 1019,

(f) 1019, (g) 1018, and IL m 0 and r = i a-' for all cases.
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Figure C-2. The ASE pulse as a function of time for different values of ±

(a) I =0, (b) a.: 0.1 cm- 1 , (c) p =1I cm- 1 , (d) g = 10cm- 1 ,
and the Initial Inversion An* = 1022 cm- 3 and r = 1 s.
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Figure C-3. The SFC pulse assa function of time for different values of the Initial
Inversion &n* In cm- 3, (a) a 1022, (b) z 1021, (C) 5 x 1020, (d) 1020,
(e) 5 x 1019, (f) 1019, (g) 1016, and for all cases r z 1.1t, and 0
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Figure C-4. The SF pulse as a function of time for different values of the
attenuation coefficient p in cm- 1 , (a) = 0, (b) = 0.1, (c) 1.0, (d) 10, (e) 102,

(f) 2 x 102, (g) 103 , and for all cases r = 1-1 7

and An* a 1022 cm- 3 .
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APPENDIX D

METHOD OF ANALYSIS OF

THERMAL TRANSFER

D1. THE FINITE ELEMENT SIMULATION TECHNIQUE

The finite element simulation technique (FEST) has been described in Refs. D-1,

D-2, and D-3 and has been used to treat several different types of problems. We will

therefore only sketch the general procedure here.

FEST applies the laws of conduction of heat and mass action to a system composed

of any number and variety of materials in the following way. The system is divided into a

number of convenient cells, each with a definite density p, thermal conductivity K, specific

heat cp, and diffusivity x. The temperature in each cell is specified initially and then a time

interval is chosen over which conduction is to take place.

Heat conduction during the time interval At takes place from one cell to another

according to Fourier's law of heat transfer. For cells (i) and (i - 1) this is given by

AQ(i - 1, i) A(ii 1) K (i, i - 1) (Tj - T._1) AtAx(i, i - 1) 1-(D-1)

where A(i, i - 1) is the area across which the transfer takes place, K(i, i - 1) the effective

thermal conductivity between cells, which can be calculated from the thermal conductivities

of the two cells, AX(i, i - 1) the separation of the cell center, Ti - Ti - 1 the temperature

difference, and AQ(i, i - 1) is the heat transferred between cells i and i - 1 during the time

interval At.

The temperature change in the ith cell after this transfer of heat between the ith cell
and the two neighboring cells (i - 1) and (i + 1) is

Ali = [AQ (i - 1, i) - AQ (i, i + 1)] (cp Pi Vi) (D-2)
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where Vi is the volume of cell i. The conductance is expressed as cndi = Ki Ai/AXi.
When the medium changes at the interface between i and i + 1, we use instead the

expression

2 cndi cndi+l / (cndi + cndi+l)

This type of program allows for relatively easy solutions to complicated multi-
layered boundary problems (Refs. D-4, D-5). Another medium can be added without an
appreciable increase in complexity of the program, whereas in the usual numerical methods
of solving the partial differential equation of heat conduction this is not the case.

In addition to the passive heat transfer due to thermal diffusion, one can take
account of heat sources in the cell (i) in a natural way by including in addition to
AQ(i - 1, i) the term AQ(i) = H(i, t) At which gives the heat change due to a reaction

occurring in the cell.

D2. STABILITY AND RESOLUTION 0

In any computational scheme a certain time interval At must elapse during which
heat flows uninterruptedly between cells. If the At chosen is too large, then the equilibrium

point will be passed and oscillations in the computed temperatures will lead to meaningless
results. This is discussed in detail by Carslow and Jaeger (Ref. D-4) and Davids and
Berger (Refs. D-2 and D-3). The well known condition which insures against such a

blow-up is

XMOD = KAt/Ax2 < 1/4 (D-3)

where Ax is the effective linear dimension of the cell in question and Kc the effective thermal

diffusivity between the cells. The above restriction on XMOD insures that during the time
interval, At, energy conservation is preserved and not more than the available heat in a cell

is allowed to flow out. 0

One of the means of reducing XMOD below the required value is to increase the cell
size. This, however, tends to give us less spatial resolution than may be desirable for a
particular problem. Furthermore, it is necessary to determine the number of cell divisions

that should be made to obtain the desired resolution and accuracy. The general rule of 0

thumb is that if S is the dimension of the material, a cell size of S/6 gives a "reasonable"
solution. Each case must be handled separately and we have found that sometimes one or
two cell divisions give sufficiently good results.
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D3. TWO-DIMENSIONAL HEAT CONDUCTION--AXIAL SYMMETRY

In the heat conduction program with axial symmetry, each cell property which is
involved in heat transfer in general is a function of two indices, I and J, corresponding to

the radial and axial directions. A representative cell is shown in Fig. D- 1. The geometrical
cell properties are:

XR(I,J) radial dimension

ZH(IJ) = vertical dimension

XS(IJ) surface area in the radial direction

ZS(I,J) = surface area in the vertical direction.

Each cell is also characterized by a thermal conductivity K(IJ), specific heat C(I,J), and

density D(IJ). At each moment in time the cell is characterized by a temperature U(IJ),
and the laws of heat conduction are used to calculate the change in this temperature over the
time interval T1.

Radius vector ZS J)

.r ZH (1 J) XS (1, J)

X.Z (1, J)

Figure D-1. Geometrical Properties of Representative Cell (I,J).

The various heat and temperature changes are shown in Fig. D-2. In the schematic
drawing ZQ(IJ) is the heat transferred from cell (I,J) to cell (Ij + 1) and ZQ(I,J - 1) is the
heat transferred from cell (I1 - 1) to cell (1,J). The quantities XQ(I,J) and XQ(I - 1,J)

give the heat lost and gained in the radial direction. The heat transfer quantities and the
resultant temperature changes are calculated by using the law of heat transfer and mass
action as stated above.
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-' "
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R

Figure D-2. Flow of Heat (ZO, XQ) Associated With Cell (I,J).
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